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Micropile supported IABs at shallow bedrock sites: Joint capacity under 

combined load controls the design

FHWA Provisions (Sabaini et al., 2005) < 1

IABs subjected to 
thermal deformations

Deck

Abutment

Micropile
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Joint strength depends on the thread details

Clinedinst (1965) explained jump-out 
mechanism for pure tension loads as a 
consequence of thread slip and plastic radial 
deformations of the pin end. 

ℎ

Longer threaded connections fail in rupture. 
Clinedinst (1965) indicates failure takes place at 
the “critical section” (root of the thread) where the 
wall gets thinner.
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There is no analytical model that incorporates the thread effect/details in 

a physically consistent way



Unconventional assumptions are required to predict bending capacity

Stress-strain state of the joint at failure 

according to Musselman et al (2007) 

developed from a limited number of tests

Average stress 

from Clinedinst 

(1965)

(Montoya-Vargas et al, 2022)

Averages

Jump-out

Rupture

𝑟 = 0.98 

𝑀𝑆𝑅𝐸 = 180 in-kip
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Need for further investigation 

Musselman method predicts failure mode and strength, but:

● Estimation of the neutral axis position is not consistent with the assumed strain profile.

● Physics behind the stress distribution are not understood yet.

● Variability of results had not been verified.

● Contribution from center reinforcing bar not considered.

● No guidance on combined loading (axial+bending).
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Undergoing research at UMaine

Objective: to understand the mechanism 

governing the flexural failure of micropiles 

threaded joints.

Goal: Predict strength and stiffness of the joint, 

including the contribution from the center 

reinforcing bar and combined loading conditions. 
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Testing procedures and instrumentation
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InclinometerInclinometer
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PinBox

Threaded
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Testing specimens cover the range of micropile diameters and threaded 

lengths typically implemented in the practice

Casing diameter

7”, 7-5/8”, 9-5/8”, and 13-5/8”
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Thread shape

V-thread, square threads

Threaded length

2”, 2.5”, 3” and 5” (nominal 

values)

Test 

ID

Thread 

type

Outer 

diameter 

(in)

Nominal 

Thread  

length 

(in)

Rebar
Post 

tension

1 a 7    2 No No

2 b 7 5/8 2.5 No No

3 a 9 5/8 2 No No

4 b 7 5/8 2 No No

5 b 7 5/8 3 No No

6 b 7 5/8 2.5 Yes No

7 b 7 5/8 3 Yes No

8 a 9 5/8 2 Yes No

9 a 9 5/8 2.75 Yes No

10 a 9 5/8 3 No No

11 c SQ9 5/8 2.5 No No

12 b 9 5/8 3 No No

13 a 9 5/8 2 No Yes

14 a 9 5/8 2.75 No Yes

15 b 9 5/8 2.5 No Yes

16 b 9 5/8 3 No Yes

17 b 13 5/8 3.5 No No

18 b 13 5/8 3.5 Yes No

19 b 13 5/8 5 No No

20 b 13 5/8 5 Yes No

Reinforcement

1-3/4” threaded bar

Combined loading

Unbonded dywidag bar for 

postensioned specimens



Selection of threaded lengths was guided by Clinedinst 

model for pure tension
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(a) (b) (c)

ID 

Outer 

Diameter*, 

𝐷 (in) 

Wall 

thickness*, 

𝑡 (in) 

Connection 

type 

Thread 

engagement 

length, 𝐿 (in) 

Thread 

height, 

ℎ (in) 

Thickness 

at pin, 𝑡1 

(in) 

Yield 

stress, 

𝑓𝑦  (ksi) 

UTS,  

𝑓𝑢  

(ksi) 

1 7 0.453 a 1.25 0.121 0.147 128 139.7 

2 7.625 0.5 b 1 0.122 0.232 132 143 

3 7.625 0.5 b 2.25 0.122 0.232 132 143 

4 R7.625 0.5 b 2.25 0.122 0.232 129 145 

5 9.625 0.545 a 2 0.122 0.201 104.7 116.8 

6 9.625 0.545 b 2.25 0.122 0.27 135.2 143.4 

7 SQ9.625 0.545 c 1.25 0.122 0.201 125 135 
* Nominal values 

 



Assemblage process mimics the installation conditions
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Micropile response is affected by joint stiffness

Euler-Bernoulli beam theory:

𝛿 =
𝑃𝑎

48𝐸𝐼
3ℎ2 − 4𝑎2
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𝑃/2 𝑃/2

𝑃/2𝑃/2

𝑎

ℎ

Beam theory

𝛿

D=7”, L = 1”

D=7.625” (Taper), L = 2.25”

D=7.625” (Taper), L = 1”

D=9.625”,  L = 2”

D=9.625” (Taper),  L = 2.25”

Test ID

Measured

D=7.625”R (Taper), L = 2.25”

D=9.625” (SQ), L = 1.25”



Relative rotations at the joint
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Piecewise 

polynomial 

interpolation

P=75 kips

P=107 kips
P=104 kips

P=100 kips

P=200 kips

Relative rotation 

at the joint

P=115 kips

𝜃
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Jump-out (Test 3)

Rupture at box (Test 1) Rupture at pin (Test 6)

Observation vs. predictions:

Failure mode

ID 

Outer 

Diameter*, 𝐷 

(in) 

Thread 

engagement 

length, 𝐿 (in) 

Predicted 

Failure 

mode 

Observed 

Failure 

mode 

Predicted 

bending 

strength 

(in-kip) 

50% 

thickness 

reduction 

(in-kip) 

Observed 

bending 

strength 

(in-kip) 

1 7 1.25 Rupture(a) Rupture(b) 1012 879 1200 

2 7.625 (Taper) 1 Jump-out Jump-out 1645 1183 1676 

3 7.625 (Taper) 2.25 Rupture(a) Jump-out 1935 1183 1620 

4 R7.625 (Taper) 2 Rupture(a) Jump-out - 1156 1850 

5 9.625 (Taper) 2.25 Rupture(a) Rupture(a) 3113 2179 3440  

6 9.625  2 Rupture(a) Jump-out 2259 1687 1950 

7 SQ9.625 1.25 Rupture(a) Rupture(a) 2611 2015 1880 
(a) Pin-end; (b) Box-end 

 



Observation vs. predictions: Strength
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Correlation coefficient: 𝑟 = 0.87 

Error: 𝑀𝑅𝑆𝐸 = 381 in ∙ kip

Similar accuracy reported on previous studies

ID 

Outer 

Diameter*, 𝐷 

(in) 

Thread 

engagement 

length, 𝐿 (in) 

Predicted 

Failure 

mode 

Observed 

Failure 

mode 

Predicted 

bending 

strength 

(in-kip) 

50% 

thickness 

reduction 

(in-kip) 

Observed 

bending 

strength 

(in-kip) 

1 7 1.25 Rupture(a) Rupture(b) 1012 879 1200 

2 7.625 (Taper) 1 Jump-out Jump-out 1645 1183 1676 

3 7.625 (Taper) 2.25 Rupture(a) Jump-out 1935 1183 1620 

4 R7.625 (Taper) 2 Rupture(a) Jump-out - 1156 1850 

5 9.625 (Taper) 2.25 Rupture(a) Rupture(a) 3113 2179 3440  

6 9.625  2 Rupture(a) Jump-out 2259 1687 1950 

7 SQ9.625 1.25 Rupture(a) Rupture(a) 2611 2015 1880 
(a) Pin-end; (b) Box-end 

 



Did thread compounds affected the performance?
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Unexpected failure mode

Average stress for jump-out:
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Did thread compounds affected the performance?

18

Average stress for jump-out:
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Do stress concentrations affected square threads with thin wall at the 

pin?
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Prediction

Observation*

Stress

Concentrations?

V-threads

Rounded at 

root

Sharp edges

SQ-threads



Conclusions

● Influence of joint flexibility on overall response of the micropile.

● Threads with thicker wall at the pin are stiffer and stronger.

● Larger casings require longer threads to ensure that rupture governs.

● Joint strength can be predicted with reasonable accuracy.

● Adopted model tends to overpredict the strength in jump-out, and underpredict strength in 

rupture. Square threads might be affected by stress concentration. 

● Failure mode was successfully predicted for some specimens. Unexpected failure modes 

might be due to the lost of friction at the threads or inaccurate model. Need to verify 

repeatability! 
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Undergoing work

● Implementation of digital image correlation to monitor strain fields near the joint.

● Testing on reinforced specimens.

● Testing on post-tensioned specimens (Bending + Compression)

21

Casing

Rebar

Strain gages
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