International Workshop on Micropiles, 2014

Experimental Study for Load Transfer Characteristics of Reinforcing Piles

Seonghun Cho*, Changho Choi**

*Graduate Student, Korea Univ. of Science & Technology **Research Fellow, KICT

Contents

- 1. Introduction
- 2. Experimental scheme
- 3. Qall- Single pile
- 4. Qall- Multiple pile
- 5. Stiffness K of reinforcing pile
- 6. Load distribution ratio
- 7. Conclusion

Introduction

 P_1+P_2 exceed the design bearing capacity of existing piles \rightarrow Need additional piles

Introduction

Load for existing piles might exceed their design bearing capacity with an amount of $P_2/3$.

Added pile can take the load of P₂/3 ???

Introduction

What is my experimental scheme?

Single pile experiment

-Setting the single pile

-Prepare soil specimen with air pluviation

-Install the foundation slab

-Install the pile cap

-Apply load with incremental vertical displacement.

-Rotation of the wrench has the pile to move vertical direction.

-The incremental vertical displacements are 1/32mm, 1/16mm, 1/8mm depending on load stage.

*Soil Box *Soil Material: Acrylic Joomoonj L=400mm Dr=40%, Φ=380mm γ_{max} 1.66 g

c Joomoonjin Sand Dr=40%, USCS: SP γmax 1.66 g/cm³, γmin 1.33 g/cm³ *Pile Material: Al L=300mm, Φ=20mm From the bottom of 60mm (3D)

Qall - Single pile

A : Elastic zone → Small settlement with load increase

B: Settlement changes rapidly

C: Ultimate state

Theoretical bearing capacity(ISO): 4.2 kgf

Multiple pile experiments

Step

1. Setting the piles (Existing piles and added one)

2. Prepare soil specimen with air pluviation

3. Setting the dial gauge

4. Apply load($P_1=Q_{all}$) to existing piles

5. Install a load-applicable device for added pile

6. Apply load(P₂>Q_{ult}) to all piles

Qall – Multiple piles

Load Stage	Load applied piles	ΔΡ	Total Ioad	Indv. Ioad E	Load on A
0	E	0	0	0	-
1	Е	2.5	2.5	0.6	-
2	Е	1.9	4.4	1.1	-
3	E	2.0	6.4	1.6	-
4	Е	2.4	8.7	1.9	0
5	E+A	2.0	10.7	2.3	0.4
6	E+A	2.0	12.6	2.6	1.0
7	E+A	2.0	14.6	2.9	1.6
8	E+A	3.0	17.5	3.4	2.4
9	E+A	3.0	20.5	3.9	3.4
10	E+A	5.0	25.4	4.8	4.6
11	E+A	5.0	30.3	5.8	5.6

Stage 4: Q_{all} E Stage 5: Q_{all} All piles Stage 9: Q_{ult} All piles

Stiffness K of reinforcing pile

K values of single pile : 14.3kgf/mm \rightarrow 0.9kgf/mm K values of reinforcing pile : 2.7kgf/mm \rightarrow 0.8kgf/mm Reinforcing pile behavior is located beyond ultimate state

Load Distribution Ratio(LDR)

Conclusion

- 1. Multiple pile experiment was performed. First, allowable load (P_1) applied to four existing piles. Additional load (P_2) was applied to four existing and one additional pile.
- Individual piles support almost equal load (25%) when P₁ is applied. The existing pile's LDR decreased 25% → 20% when settlement developed. The LDR of an additional pile increased from 0% → 20% as load increased. At this moment, the foundation system behaves as a unified entity.
- 3. The K-values of an additional pile were relatively lower than the single pile test. The additional pile behaves as though it is ultimate state throughout the loading history.
- 4. Upon foundation retrofitting design, a precise analysis for load distribution between existing and additional piles has to be performed according to the above experimental study.

Question?

Thank You

