SLOPE STABILIZATION BY MICROPILES : CASES STUDY IN NORTHWESTERN TUNISIA

S. Khediri, S. Haffoudhi, K. Zaghouani

Selma Khediri, Krakow, June 2014

I. INTRODUCTION

Exceptional event in 2012 in Northwestern Tunisia:

Photo 1: Reactivated old landslide

Photo 2: Landslide: prefailure state

Selma Khediri, Krakow, June 2014 3

Photo 3: Landslide: occured failure

Photo 4: Reactivated old landslide

III. GEOLOGICAL CONTEXT

Soils involved

Bedrock: mainly hard marls, compact claystones, sandstone, Upper layers : filling, scree and plastic clays, lying on steep slope

5

III. SOLUTIONS

Emergency solutions

Case Photo N°2: Prefailure state

Soften the slope Soil nailing: rows of nails and micropiles , drainage system

III. SOLUTIONS

Long term solutions

5 options highlighted in the expertise study

5 options involving flexible and rigid structures, associated to earthworks (reprofiling and slope softening)

Implemented option: mostly stabilization by rigid elements coupled with earthworks and drainage actions:

Reinforced retaining walls, founded on duets of micropiles + deep and shallow drainage actions (subhorizontal drains + draining material behind the walls, in the slope)

Case Photo N°2: Soil profile: *situation after the landslide*

Mechanical characteristics:

Layer	γh (KN/m3)	C (Kpa)	φ (°)
Filling	19	25	20
Scree	18	71	28
Compact Clay	19	117	26
F. Claystone	20	107	27

III. SOLUTIONS

III. SOLUTIONS

III. SOLUTIONS

III. CALCULATION AND CONTROLS

CALCULATION:

French standard « Fascicule 62 » : calculation of micropiles admissible bearing capacities, based on pressuremeter data (Software FOXTA)
 Common standard methods for slope stability calculation: Bishop method (Software TALREN), and also Finite Element calculation (Software PLAXIS 2D)

CONTROLS:

Ongoing work control on site
Tensile tests: loaded to 2*Qs

S. Khediri , S. Haffoudhi, K.Zaghouani OTHER MICROPILE USE IN TUNISIA

Many other fields for micropiles use in Tunisia :
underpinning work on existing foundations (reservoirs, old constructions....)
Deep foundations for new constructions:
pylons, storage tanks, industrial and residential buildings
Berlin walls......

