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BACKGROUND 1

Micropiles: small-diameter (typically less than 30 cm), drilled and grouted 
replacement piles that are typically reinforced .

Types of Micropiles (FHWA Classification): 
a) Philosophy of behaviour

Case 1: micropiles ar directly loaded.

Case 2: Support and stabilization by interlocking.

b) Method of grouting

Type A: grouting under gravity head.

Type B: grouting pressure between 0.3 and 1.0 MPa.

Type C: grouting pressure 1.0 MPa.

Type D: grouting pressure between 2.0 and 8.0 MPa.
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2OBJECTIVES

Case study, Type B 
micropile (Han and 

Ye, 2006)

Model calibration 
PLAXIS 2D

Quantifying 
adhesion 
properties

Uncertainties 
in soil testing 
and numerical 

modeling

Effect of micropile diameter

Micropile 
enlarged 

portion length
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CASE STUDY (HAN and Ye, 2006) 3

Overview

Micropile:
Type B, Diameter = 0.15m, Length = 8.0m, 
Grouting pressure = 0.2 – 0.5MPa.

Drill and 
injected water

Drill and 
injected water

Grout Grout under 
pressure
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4CASE STUDY (HAN and Ye, 2006)

Overview

Site soils:
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Top soil

Lean clay crust
γ = 19.1 kN/m
sat

3

Soft lean clay
γ = 17.6 kN/m
sat

3

Soft fat clay 
γ = 17.1 kN/m

Vane shear Cu (kPa)
10 20 30 40

PL = 10.8 – 13%
IL > 1.0

PL = 21.5%
IL > 1.0

Micropile
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NUMERICAL MODELING 5

Geometrical Modeling

20m

10m

Axisymmetrical model.

15-noded triangular element.

Randolph and Wroth (1978):

- Horizontal boundary placed 
at  2.5 L.

- Vertical boundary placed at 

r = 2.5L(1-ν)
Quick maintained load test.
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6NUMERICAL MODELING

Material Modeling

`E

-variablevariableVariableVariableRint
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-0000ψ o
314009.402713.3013.30E` (MPa)
-0000φ o
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Non-porousUndrainedUndrainedUndrainedUndrainedBehaviour

Linear-
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Coulomb

Mohr-
Coulomb

Mohr-
Coulomb

Mohr-
CoulombModel

Micropile
Soft fat 
clay

Soft lean 
clay (2)

Soft lean 
clay (1)

Lean clay 
crust

Lateral earth pressure,  Ko=(1 – sinφ`) OCRsinφ`
Ca = Rint . Cu Ca = α . Cu
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INTERFACE PROPERTIES 7

Soil Parameters

For three enlarged 
portion lengths, Len, 
(0.25, 0.5, and 1.0m)

Vary soil 
parameters to 

increase its 
stiffness

Vary soil 
parameters to 
decrease its 

stiffness Get α and Len that 
gives the best match 

between the 
simulated and the 

field curves

Get lower bound 
of α

Practical 
range of α

Vary the α value

First 
Methodology

Use Len from first 
methodology

Second 
Methodology

Get upper 
bound of α
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8INTERFACE PROPERTIES
First Methodology
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9INTERFACE PROPERTIES
First Methodology
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10INTERFACE PROPERTIES
First Methodology
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11INTERFACE PROPERTIES
First Methodology
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12INTERFACE PROPERTIES
Second Methodology
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α varies between 0.8 and 1.0 with best estimate of 0.9

Bruce (1994): a varies between 0.6 and 0.8  
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13EFFECT OF SHAFT DIAMETER

29.534168.412.61810.228

31.521154.58.81630.19

3211142.77.31500.17
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Unit 
shaft 
resist. 
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% 
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Ultimate load increases by a factor of 2

Unit shaft resistance is approximately constant (Frassetto, 2004)

Abrupt increase in axial load in pile near toe diminishes as shaft 
diameter approaches enlarged portion diameter
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14CONCLUSIONS

Adhesion factor α ranges between 0.8 and 1.0, with the best estimate of 0.9.

Estimated α values are highly dependent on factors such as site soils, method of 
construction, etc.

The enlarged base can mobilize some negative skin friction.

The failure of surrounding soft clay initiated at the toe and expanded upward and 
laterally along the shaft.

Ultimate capacity increased approximately linearly with the increase of shaft diameter.

Unit shaft resistance remained approximately the same with the increase of shaft 
diameter.
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CASE STUDY (HAN and Ye, 2006)

Overview

0.15m

Enlarged 
base

0.228m

L = 8.0m

Len
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CASE STUDY (HAN and Ye, 2006)

Overview
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IENTERFACE PROPERTIES

Micropile

Failure
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IENTERFACE PROPERTIES

Failure
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IENTERFACE PROPERTIES

Failure
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IENTERFACE PROPERTIES

Failure
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