

ISM 15th International Workshop on Micropiles

Micropiles in the Second Generation of Eurocode 7: Geotechnical Design

Natalia Maca, TITAN POLSKA, CEN TC/250/SC7/TG-D1 | 01.06.2023

Eurocodes journey and importance

- 1975 Start by EC
 - 2002-2007 Introduction of the current Eurocodes
 - 2011-2016 Evolution Groups: topics for revision EC7
 - 2015-2025 CEN/TC250 SC7: Drafting of the 2nd generation of EC7: updating, improvements, harmonisation and developments for future
- 2035-2040 Next Generation?

+ ISO/TC 182 Testing of geotechnical structures+ CEN/TC 288 Execution of special geot. works

- EC establishes principles and requirements for the safety, serviceability, robustness and durability of structures (...) appropriate to the consequences of failure.
- EC describes the basis for structural and geotechnical design and verification according to the limit state principle:
- calculation using the partial factor method or other reliabilitybased methods (primary method of verification)
- prescriptive rules (conservative and justified by comparable experience)
- testing (direct assessment on an actual scale)
- Observational Method

PILED FOUNDATION IN PREN1997-3:202X

- In the current EC7 micropiles were not mentioned (only EN 14199)
- Assumptions: micropiles are one of the pile types, but some rules were troublesome
- In 2nd generation of EC7 pile design significantly evolved
- Micropiles are addressed explicitly
- Some of the new content:
- Single piles, pile groups and piled rafts under axial and transversal loading and displacements
- Importance of the settlements and the ground non-linearity
- New approach for the effect of ground displacement (taking into account SSI)
- Recommandations for cyclic effects
- Material, execution and testing requirements

Current EN 1997-1: Clause 7 Piled Foundations

prEN 1997-3:202x Clause 6 Piled Foundations Annex C

Clause 6	 Essential design rules Basic requirements for analysis and verification of ultimate
main text	 and serviceability limit state Design approach and partial factors (NDP)

Annex C – calculaiton models

- axial pile resistance based on ground parameters or CPT/ PMT profiles or empirical tables
- downdrag due to vertical ground movements
- pile groups subject to axial tension
- single pile settlement using load transfer functions
- single pile lateral displacement using load transfer functions
- buckling and second order effects
- determination of axial pile resistance under cyclic loading

- Clause 6 applies to single piles, pile groups and piled rafts (N).
- Piles should be classified according to their method of execution

\rightarrow used to determine different values of partial and model factors γ_R

Pile type	Class	Example pile types
Displacemen	Full	Driven cast-in-place concrete piles; Driven closed-ended
t piles displacement		tubular steel piles; Cast-in-place concrete screw piles
		Driven micropiles;
	Partial	Driven open-ended tubular steel piles; Driven and
	displacement	grouted steel H-section piles; Cast-in-place concrete
		screw piles;
		Drilled or bored pressure-grouted micropiles
Replacement	Replacement	Bored cast-in-place concrete piles () Bored or drilled
piles		steel tubular piles; Barrettes, Grouted piles or battetts
		Drilled or bored micropiles;
Piles not liste	ed above	Steel helical piles; Compressed-air driven piles

- The current Eurocode 7 does not explicitly regulate the material or durability requirements
- Some regulations in EN 14199
- The 2nd generation of Eurocode 7 gives strict rules for materials: references to other structural EC or other standards
- Special provisions regarding ductility (EN 1993-1-1, 5.2.2 or of Class B of EN 1992-1-1)

Permitted steel grades for mircopiles/soil nails/anchors acc. to:

- EN 10025 (all parts), Hot-rolled products of structural steel;
- EN 10080, Steel for the reinforcement of concrete (not all);
- prEN 10138-3 or 4, Prestressing steels
 Part 3: Strands or Part 4: Bars (not all);
- EN 10210-1, Hot finished structural hollow sections of non-alloy and fine grain steels;
- EN 10219-1, Cold formed welded structural hollow sections of non-alloy and fine grain steels.

- The 2nd generation of Eurocode 7 gives strict rules for durability: especially for tension elements
- The susceptibility of a steel to hydrogen embrittlement, stress corrosion cracking is highlighted;
- The negative effect of the high strength surface treatment is noted.
- For steel with fy > 600 MPa the corrosion protection shall comply with EN 1537.

The design service life shall be achieved by using one or more of the following **corrosion protection measures**:

- use of additional steel thickness as corrosion allowance (acc. To EN 1993-5 – with a note that valid for black steel, does not consider potential localised corrosion nor potential pitting corrosion);
- grout, mortar or concrete protection;
- grouted duct;
- protective surface coating;
- appropriate steel material;
- use of stainless steel (see EN 1993-1-4).

- Effect of ground displacement (downdrag, heave, transv.)
- Axially loaded single piles (next slides)
- Transeversally loaded single piles
- Pile groups $R_{\text{group}} = min\left\{\sum_{i}^{n} R_{i}; R_{\text{block}}\right\}$ $R_{\text{d,group}} = \frac{R_{\text{rep,group}}}{\gamma_{\text{R,group}}\gamma_{\text{Rd,group}}}$

 $R_{\text{piled-raft}} = \left(\sum_{i}^{n} R_{\text{c,i}} + R_{\text{raft}}\right)$

$$R_{d,piled-raft} = R_{d,group} + \frac{R_{rep,rat}}{\gamma_{R,rat}}$$

- Buckling
- Structural failure
- Serviceability Limit states

$R_c = R_s + R_b$ $R_b = A_b q_b$ $R_s = R_{st} = \Sigma$	$A_{s,i}q_{s,i} = \frac{R_{c,rep}}{\gamma_{Rc},\gamma_{Rd}} or \left(\frac{R_{b,rep}}{\gamma_{Rb},\gamma_{Rd}} + \frac{R_{s,rep}}{\gamma_{Rs},\gamma_{Rd}}\right) = \frac{R_{c,rep}, R_{b,rep}, R_{s,rep}, R_{t,rep}}{R_{t,rep}}$ $R_{t,d} = \frac{R_{t,rep}}{\gamma_{Rst},\gamma_{Rd}} = can be determined$			
By caluclation	from ground parameters - 'ground model' (qs and qb based on C_u , c and φ , p_l^* , q_c , N_{SPT} , etc. or empirical tables) $R_{rep} = R_{cal}$			
	from N field test profiles - 'model pile' (N CPTs, N PMTs, N SPTs, etc. or empirical tables) $R_{rep} = \min\left\{\frac{R_{calc;mean}}{\xi_{mean}}; \frac{R_{calc;min}}{\xi_{min}}\right\}$			
By testing	from tests• static pile load tests• dynamic impact or rapid load tests (ULS in compression only) $R_{rep} = \min\left\{\frac{R_{test;mean}}{\xi_{mean}}; \frac{R_{test;min}}{\xi_{min}}\right\}$			
Prescriptive rules	According to the given rules			

CONCEPT FOR MODEL AND CORRELATIONS FACTORS ADJUSTED

CONCEPT FOR MODEL AND CORRELATIONS FACTORS ADJUSTED

$R_d = \frac{1}{\gamma_{\rm R} \times \gamma_{\rm Rd}} \min$	$1\left\{\frac{R_{\text{calc;mean}}}{\xi_{mean}}, \frac{R}{\xi_{mean}}\right\}$	$\left. \frac{\zeta_{min}}{\xi_{min}} \right\}$	$R_d = \frac{\gamma_R}{\gamma_R}$	1 < γ _{Rd} mir	$n \begin{cases} R_{\text{test;m}} \\ \xi_{\text{mea}} \end{cases}$	$\frac{1}{2} e_{an} \frac{R_{tes}}{\xi_n}$	nin				
	Correla	ation				Numb	per of te	sts			
Static load	Fact	or	1	2	3	4	5	7	,	10	≥20
tests	ξme	an	1.4	1.35	1.33	1.31	1.2	9 1.2	27 1	.25	1.19
	ξmi	n	1.4	1.27	1.23	1.20) 1.1	5 1.1	2 1	.08	1.06
-	-		I								
Rapid load	<u>Correlation</u>	Correlation				<u>Num</u>	<u>ber of te</u>	<u>sts</u>			
load or	<u>Factor</u>	Factor	1	2	<u>3</u>	<u>4</u>	5		7	<u>10</u>	<u>≥20</u>
dynamic	Rapid Load	<u> <u></u>Emean</u>	<u>1,4</u>	<u>1,36</u>	<u>1,32</u>	<u>1,29</u>	<u>) 1,2</u>	8 1,	25	<u>1,23</u>	<u>1,19</u>
impact	Test	$\underline{\xi}_{\min}$	<u>1,4</u>	<u>1,28</u>	<u>1,23</u>	<u>1,19</u>	<u>)</u> <u>1,1</u>	<u>.5</u> <u>1</u> ,	<u>13</u>	<u>1,1</u>	<u>1,06</u>
tests	<u>Dynamic</u>	<u> <u></u>Emean</u>	<u>1,4</u>	<u>1,36</u>	<u>1,32</u>	<u>1,29</u>	<u>) 1,2</u>	<u>.8 1.</u>	<u>25</u>	<u>1,23</u>	<u>1,19</u>
	Impact Test	$\underline{\xi}_{\min}$	<u>1,4</u>	<u>1,28</u>	<u>1,23</u>	<u>1,19</u>	<u>)</u> <u>1,1</u>	<u>.5</u> <u>1</u> ,	<u>13</u>	<u>1,1</u>	<u>1,06</u>
	۔ لمح										T
Model pile	Correlation	Coefficient			l	Number	of tests o	r profiles	5		
method	Factor ^{a,b}	of variation (CoV)	1	2	3	4	5	7	10	<u>≥</u> 2	0
	ξmean	≤ 12 %	<u>1.4</u>	<u>1.35</u>	<u>1.33</u>	<u>1.31</u>	<u>1.29</u>	<u>1.27</u>	<u>1.25</u>	1.1	9
	<u> <u></u><i>E</i>min</u>	<u>n/a</u>	<u>1,4</u>	<u>1,27</u>	<u>1,23</u>	<u>1,20</u>	<u>1,15</u>	<u>1,12</u>	<u>1,08</u>	1,0	<u>6</u>

CONCEPT FOR MODEL AND CORRELATIONS FACTORS ADJUSTED

Calculation model uncertainty

	Verification by	Model fac	tor γ _{Rd}	
Ground Model	Confirmed by suitability tests	1.2		
	Extensive comparable experience without site- specific Control Tests	1.3		
Method	Serviceability Control Tests	1.4		
	No pile load tests and limited comparable experience	1.6		
		Compressive resistance	Tensile resistance	
	Pressuremeter test	1.15	1,4	
Model Pile Method	Cone penetration test,	1.1	1.1	
	Profiles of ground properties based on other field or laboratory tests	1.2	1.2	

$$R_{d} = \frac{1}{\gamma_{\rm R} \times \gamma_{\rm Rd}} \min\left\{\frac{R_{\rm test;mean}}{\xi_{mean}}; \frac{R_{\rm test;min}}{\xi_{min}}\right\}$$

Testing method uncertainty

Verification by		Model factor γRd				
		Fine soils	Coarse soils	Rock mass		
Static load tests		1.0	1.0	1.0		
cycles)	nultiple load	1.4	1.2	1.2		
Rapid load tests (s cycle)	single load	1.4	1.2	1.2		
Dynamic impact tests (signal	Shaft resist.	1.5	1.2	1.2		
matching)	End resist.	1.4	1.25	1.25		
Dynamic impact tests (multiple	Dynamic impact Shaft resist.		1.2	1.2		
blow)	End resist.	1.4	1.2	1.2		
Dynamic impact tests (closed form	Shaft resist.	Not permitted	Not permitted	Not permitted		
solutions)	End resist.	Not permitted	1.3	1.3		
Wave equation analysis		Not permitted	1.6	1.5		
Pile driving formul	ae	Not permitted	1.8	1.7		

$R_d = \frac{1}{\gamma_{\rm R}} \times \gamma_{\rm Rd} \min\left\{\frac{R_{\rm calc;mean}}{\xi_{mean}}; \frac{R_{\rm calc;mean}}{\xi_{mean}}; $	ξ_{min}			Material approach both comb	factor (MFA) – inations	Resistance factor approach (RFA)						
Different sets of partial	of	factor on	Бутвоі	(a)	(b)	Pile class	Ground Model Method	Model Pile Method	Design by testing			
factor γ_R	Actions; Effect of actions		γF ; γE			All	VC1					
Additionally pile design	Axial tensile resistance	Ground properties	γM				Not factored					
		ance Shaft resistance in tension	Shaft resistance		NOL US	Full displ.		1,2		1.25		
using site specific				resistance	resistance	resistance	resistance	ce vRst		Partial displ.	1,2	1.15
testing			•			Replacement	1,3		1.25			
(strong connection with						Unclassified	1,5	1.4	1.25			
O 22477)		Actions and effects of- actions	γF; γE	VC4 or VC1	VC3		VC1					
	Transverse resistance	Transverse resistance	resistance propert	Ground properties	γM	M1	M2	All	Not factored	not used	not used	
		Transverse resistance	γRtr	Not factore	ed		1,3					

The representative value of unit shaft friction q_{s,rep}

$$q_{s,rep} = \min(k_{s,PMT}(a_{PMT}p_{LM}^* + b_{PMT})(1 - e^{-c_{PMT}p_1}); q_{s,max})$$

- The representative value of unit base resistance $q_{b,rep}$ (but for micropiles usually not taken into account) $q_{b,rep} = k_{b,PMT} \frac{1}{z_1 + 3z_2} \int_{-z_1}^{3z_2} p_{LM}^*(z) dz$
- ks,PMT and kb,PMT depend on pile type and ground type
- aPMT, bPMT, cPMT depend on ground type
- P*LM is the PMT net limit pressure (MPa) at a depth z;

Parameter	Fine soil	Coarse soil	Chalk	Marl/ marly limestone	Weathered rock masses
ks _{.PMT}	2.70	2.90	2.40	2.40	2.40
kb, _{PMT}	1.15	1.1	1.45	1.45	1.45
q _{s,max} (kPa)	200	380	320	320	320

Current EN 1997-1	EN 1997-3:2024x
from static load tes	ts results
(DA1.C2) Fcd=10.2MN Rc;d = 1.15MN, → 9 (8.9) piles are needed	(RFA) Fcd=12.9MN Rc;d = 1.57MN, → 9 (8.2) piles are needed
from ground test pr	rofiles (CPT)
(DA1.C2) Fcd=10.2MN Rc;d = 0.96MN, → 11 (10.6) piles are needed	(RFA) Fcd=12.9MN Rc;d = 1.16MN, → 12 (11.1) piles are needed

- One Design Case to be checked instead of having to evaluate multiple Design Approaches
- Additional factors, a new "design path", but the outcome is comparable
- The new correlation factors could provide slightly more conservative characteristic values > 5 piles
- Individual datasets shall comply with CoV ≤ 12%; if not datasets should be split into datasets with less variation

Based on: Patrick Ijnsen, NEN Webinar 19.10.2022

2nd generation of EC7 provides rules for numerical models

- EFA using characteristic values and applying partial factor on effects of action
- MFA recommended with modelling excursion to invoke design values (factored parameters) at critical stage, involves a procedure such as strength reduction
- MFA alternative using design values (factored parameters from start)

Dual check for all problem types

- Pile design acc. to prEN 1997:202x is an evolution, no revolution
- Harmonisation of all design aspects, incl. materials, execution, testing
- New topics: pile groups, piled rafts, numerical calculations
- Micropiles are explicitly in the scope of prEN 1997:202x
- prEN 1997:202x specifies basic requirements for analysis and verification of piled foundations, not specific calculation models
- EC7 shall be combined with national experience and NDP
- Where not restricted by National Annex, EC7 remains flexible for project-specific choices - useful for projects outside of Europe.
- A modern framework for state-of-the-art pile design

