

ISM 14TH INTERNATIONAL WORKSHOP FOR MICROPILES

Comparison of Micropile Practices

North America and Australia

Safety Moment: progress on safety

Why Micropiles?

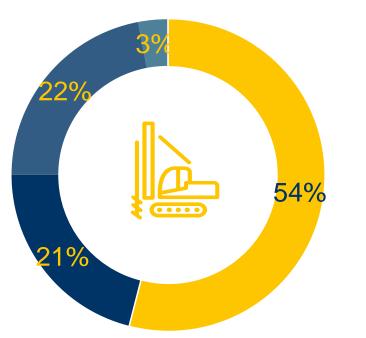
Restricted Access:

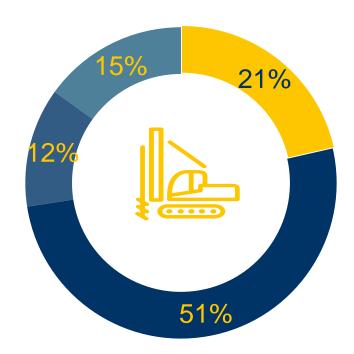
- Headroom Restrictions
- Access Constraints
- Load Capacity -Platforms
- Existing Structures

Ground Conditions:

- Obstructed Ground Boulders / Voids / Fill
- Variable Ground Overburden / Glacial Till / Fill
- Geotechnical Capacity and Performance

Economics:


- Rectification Works
- Programme Acceleration
- Demolition VS Access
- Rehabilitation Works
- Retrofit / Seismic Upgrades


Market Size Where do we Differ??

Australian Market:

North American Market:

- CFA (Augercast + Displacement)
- Bored (Drilled Shaft)
- Driven (Precast + Franki + Sheets)
- Micropiles

Case Study Restricted Headroom

Star Casino

Central Station

- Ø114-Ø324mm
 Permanent / Temporary
 Cased
- Cased Auger System
- Rotary Duplex
- DTH (Super-Jaw)
- Necessarily

- Labour Intensive
- Modified/Specialist Plant
- Stroke & Rod/Casing Change
- Extensive Material Certification – Joint Testing

Sino Iron

Case Study

Restricted Headroom

NA Rail Bridge

NSMC – Salem - Rentention

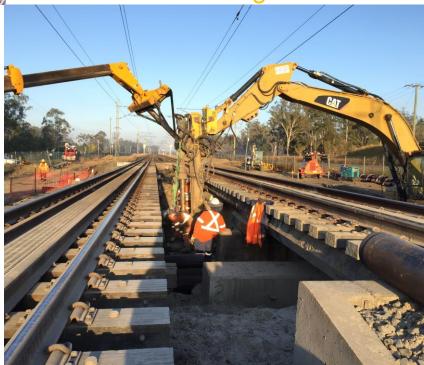
- Contact Lagging to Permanent Cased Soldier Pile Wall
- Foundation Repair/Strengthening

- Labour Intensive
- Modified/Specialist Plant
- Early Works Prior to Major Demolition

NSMC – Salem - Rentention

Case Study Restricted Access

Queens Wharf



Tropicana Gold Mine

- Rig Drilling Capability
- Required Capacity
- Pre-Fabricated Cages / Single Bar
- 2MN pile

- Extent of demolition to enable full size piling rigs
- Excavator Mounted Masts
- Reduced Ground Pressure

Rosewood Rail Bridge

Case Study Restricted Access

• Nimble and Versatile

 Last Resort When Conventional Rigs Don't Fit

Case Study Open Headroom

Helena Valley - Perth

CBD - Sydney

- Conventional Pile Substitute
- Obstructed Ground
- Temporary Works Retention
- Versatile Pile Locations
- Tension Loads

- Restricted Access
- Ground Pressure Adjacent Excavation Pit
- Limited Working Footprint

CBD - Sydney

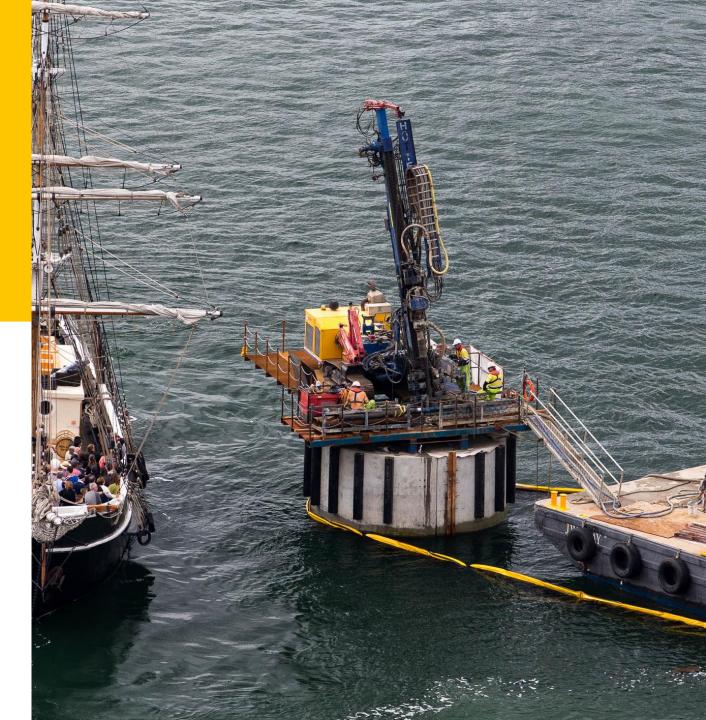
Case Study

Open Headroom

NSMC - Salem

SBWTC - Boston

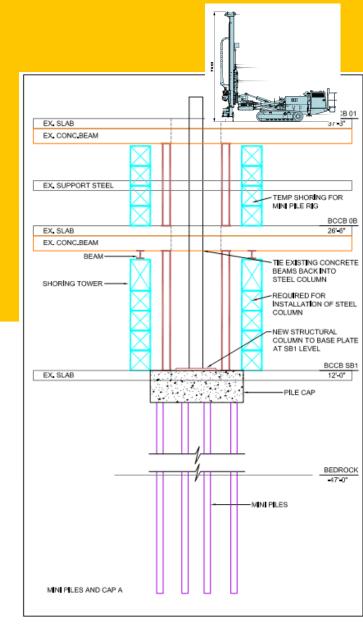
 Glacial Till – SuperJaw DTH


- Maximum Stroke for Greater Efficiency
- Larger Rigs Higher Torque Heads – Larger Diameter = Greater Structural Capacity

Case Study OPT-Sydney

Platform Requirements

- Tension Anchors installed through driven steel tube pile for new wharf dolphin
- Prefabricated Steel Platform Structure Placed on Wharf Dolphin
- Hutte 609 Dual Rotary Ø219mm casing with Ø190mm bit
- 4no. @ 31m deep within Ø1,200mm steel tube


Case Study BCH-Boston

Platform Requirements

- 360-ton Micropiles
- 13 ³/₈" Temporary Lining to underside base slab
- 10 ³/₄" x 0.545 cased to rock
- 7" x 0.950 @ 20' development casing
- #24(120mm) GR. 75 full length reinforcement
- Casagrande M9 Duplex
- 100' (33m) deep

Case Study IMAS-Hobart

Variable Ground Conditions

- Highly Variable Ground Conditions (Boulders)
- Numa Super-Jaw Overburden Drilling System
- 1500+ kN Working Loads
- Ø273/254mm diameter permanent casing
- Cased to rock bond in socket
- 50MPa grout
- 4no. Tension Tests to AS2159-2009 for verification

Case Study SBWTC-MA

Rectification Works

- Obstructed Ground Tie-backs / Trumpets
 / Sheets / Concrete
- Rectification of Broken/Undrivable Driven Precast Piles
- Duplex Rotary Aggressive Cutting Shoes
- Single #75mm Bar
- Cased to rock bond in socket

Looks Pretty Similar Where do we Differ??

Australian Market:

- Not well established in engineering practice Market Size!
- Used as a last resort preference for conventional piling techniques
- Typically proposed by contractor as alternative
- Often due to access and headroom restrictions
- Designed to AS2159 or Project / Client specific design requirements
- Material Supply ARCS Certified Mills
- Asian and European Suppliers 6 week lead times

North American Market:

- Well established method in engineering practice – Market Size!
- Typically driven by geotechnical conditions
- Designed to SA-097-070 or to the IBC with local building codes and geotechnical best practice
- Value Engineering Options
- Material Supply Buy American/America / Prime Vs Mill Second Pipe
- Domestically Sourced short lead times

Standards/Guidelines:

Australian Market:

- AS 2159-2009 (Civil Engineering and Building) and AS 5100.3-2017 (Bridges),
- Not micropile specific. A small reference to small diameter displacement piles (<0.3m) only,
- Standard to be used in conjunction with other AS standards (AS3600, AS4100, AS1170),
- Factor of safety is risk dependent,
- ✓ Uses Limit State approach (SLS, ULS).

North American Market:

- Federal Highway Administration Manuals,
- SA-97-070 Design and Construction of Micropiles (2000), NHI-05-039 Micropile Design and Construction (2005),
- Developed specifically for Micropiles,
- Covers application, design, drilling methods, construction and testing,
- Two design approaches: Service Load Design (SLD) and Load Factor Design (LFD).

Structural Capacity:

Australian Market:

Reinforced concrete: (AS 3600: 2018)

 $R_{d,s} = \phi_s k R_{us}$

 ϕ_s = 0.65 and 0.85 in compression and tension Design strength of concrete = 0.72 to 0.85 times f'_c k = 0.75 to 1.0 (assume 1.0)

• Steel: (AS 4100-1998)

 $R_{d,s} = \phi_s R_{us}$

 $\phi_s = 0.9$ in compression in tension

✓ Overall FS (1.35/φ_s) ~ 1.5 to 2.5 (c), 1.5 to 1.6 (t)

- ✓ FS will be higher if k=0.75 would be used.
- Combined load factor (DL+LL) of 1.35 was used, if majority of the load is LL, than FS would be similar.

North American Market:

• SLD Method (most common):

In compression: 0.40 $f_{y-grout}$ +0.47 $f_{y-steel}$ In tension: 0.55 $f_{y-steel}$

Overall FS (1/factor) = 2.12 (c), 1.8 (t)

Geotechnical Capacity:

Australian Market:

General

$R_{d,g} = \phi_g R_{d,ug}$

 ϕ_g = 0.61 and 0.70 in compression and tension ϕ = 0.8 additional factor for piles tension commonly used but not directly required by AS2159

ARR assumed as 1.5 to 2.0,

North American Market:

SLD Method (most common):

 $P_{G-allowable} = \alpha_{bond} / FS \times \pi \times D_b \times L_b$

FS = 0.5 in compression and tension α_{bond} – Ground to grout bond capacity $D_b \times L_b$ – Micropile diameter and length of bonded section

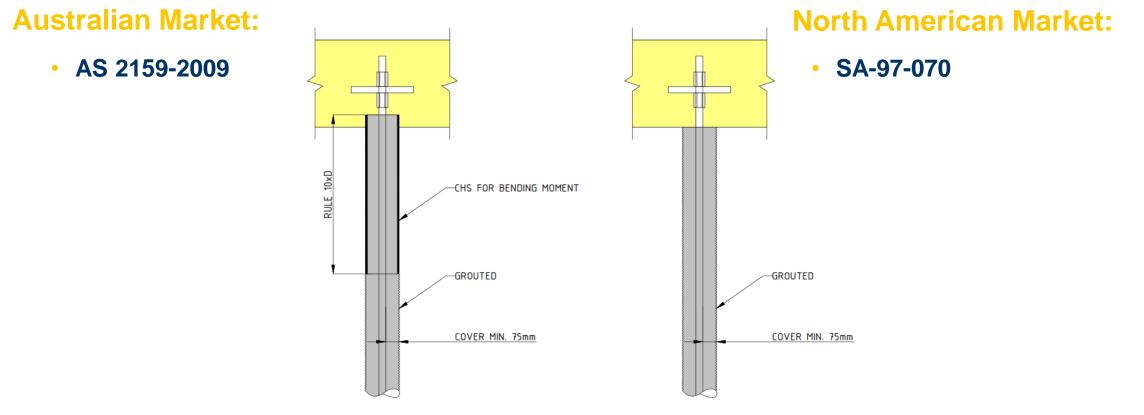
✓ Overall FS (1.35/φ_g) ~ 2.21 to 2.8

 AS does not provide guidance on grout-ground bond capacities. Local geotechnical knowledge is required (eg. Pells et al. 2019).

✓ Overall FS = 2.0

 FHWA provides expected ground to grout bond capacities based on drilling techniques

Australian Market:


North American Market:

Section	AS 2159 (2009)	SA-97-070 (2000)
Group of micropiles - Minimal spacing 3.0D to avoid group effect reduction.	In addition to other relevant design actions, pile to be designed for a bending moment Cl. 5.2.2 $N_d \ge 0.05D$ (min. any pile and with depth)	No additional bending moment to be accounted for if 3 or more MPs are used. Efficiency factor to be considered for block failure if MPs spacing is < 3D
Performance	Not specified. Determined by Engineer. Default testing acceptance criteria 1%D + Elastic deformation under SLS	The Owner to provide specific performance criteria (e.g., movement of structure)
Corrosion Protection: Assume: Design Life 100y and serve exposure classification	Concrete: 50MPa and 100mm cover, Steel: 4mm to 10mm section corrosion loss	Grout cover – min. 25mmin soil and 12.5mm in rock. Other conventional corrosion protection also specified (e.g. corrosion allowance for steel casing, encapsulation, coating)
Buckling	For freestanding portion or in very soft soils No guideline on design	Very specific design consideration for very weak or liquefiable soils: $P_{cr} = \pi^2 EI / L^2 + E_s L^2 / \pi^2$
Grout to Steel Bond Capacity Drives length of micropile	< 2.0MPa (max) AS 3600 (deformed bars) Based on concrete – neat w/c grouts not considered	1.0MPa to 1.75MPa – smooth bars/pipes 2.0MPa to 3.5MPa – deformed bars
Slope Stability	N/A	Chapter 6 provides detailed guidance on design miropiles for slope stability applications
27		

Impact Of Pile Group Eccentricity Design Requirement:

> Additional Permanent Casing Within Top Section of Pile

Testing:	Australian Market:	North American Market:
Section	AS 2159	SA-97-070 (2000)
Project: Assume number of piles less than 249 No.	Testing requirements not based on size of the project. Testing/No testing will affect safety factor by approx. 10% to 15%	FHWA – dependant no. piles. Table 7-1 to 80% of steel yield capacity
Ultimate (sacrificial pile) DL (working)	Optional (to grout-to-ground failure) Commonly on small diameter and reduced bond length (~3m)	Optional (to grout-to-ground failure)
Verification (sacrificial pile)	$1.35/\phi_g ext{ x DL} \sim 2.5 ext{ x DL}$ (up to designer and project risk rating)	2.5 x DL (1 No.)
Proof (production pile)	N/A	1.67 x DL (<5%)
Serviceability (production pile)	1.0 x DL 1% to 3% of MPs (typical, depending on ARR)	N/A
Creep (all)	Required in Clays or long time settlements – if bond length in creep sensitive ground	At constant test load with maximum 2mm/log cycle is common acceptance criteria
23		

Summary:

• AS 2159-2009:

- Not specific for micropiles, lack of design specific elements,
- Factor of safety is risk dependent (ARR),
- Multiple cross reference to other Australian Standards,
- ✓ Outcome can be very onerous if specific clauses are adopted (Cl. 5.2.2),
- Structural design is more lenient over FHWA driven by our material certification process (no mill 2nd pipe)
- > Time to develop a micropile specific code/guideline?

• FHWA:

- Comprehensive document for miropiles design, construction and testing,
- ✓ Factor of safety is fixed and mandatory testing project dependent (No. of MPs),
- Geotechnical design is more favourable over AS,
- Much favourable in regard to corrosion protection. Smaller diameter can be used.
- Take full advantage of a developed market and drive further innovation

