

# DEVELOPMENT OF A DESIGN, INSTALLATION AND TESTING FEEDBACK MODEL FOR MICROPILES IN PROJECTS WITHOUT EXTENSIVE GEOTECHNICAL INFORMATION

Allan Herse B.Eng (Civil), MIEAust, CPEng, RPEQ





# DEVELOPMENT OF A DESIGN, INSTALLATION AND TESTING FEEDBACK MODEL FOR MICROPILES IN PROJECTS-WITHOUT EXTENSIVE GEOTECHNICAL INFORMATION

Allan Herse B.Eng (Civil), MIEAust, CPEng, RPEQ















## Foundations at the end of their design life







Challenging Locations







Needed to keep new foundations as small as possible to minimise visual impact and construction materials











#### Hollow bar micropile solution was proposed









#### No soils information....what to do?



- Live power lines made it difficult for geotechnical drilling beneath towers
- Access restrictions within residential areas
- Steep terrain
- Time
- Cost



#### Traditional design and installation sequence













### Then we remembered what Nadir always says about having a customer with a need









#### Site IT152 — What do we think?

| Layer Number | Soil Description                     | Layer position    | SPT "n" value |
|--------------|--------------------------------------|-------------------|---------------|
| 1            | Clayey Silt, Firm to Stiff           | 0-1.2m            | N/A           |
| 2            | Clayey Sand and Gravel, Medium Dense | 1.2m-2.5m         | 13            |
| 3            | Sand and Gravel, Loose               | 2.5m-4m           | 4             |
| 4            | Silty Clay, Hard                     | 4m-5.8m           | 40            |
| 5            | Sandy Silty Clay, Hard               | 5.8m-7.2m         | 36            |
| 6            | Sandy Silt, Stiff                    | 7.2m-9.7m         | 10            |
| 7            | Silty Sand, Loose                    | 9.7m-11.8m        | 5 & 11        |
| 8            | Sand, Medium Dense                   | To limit of tests | 14 to 20      |

Design load estimate of the 9m pile was 250kN (56kips) if using AS2159 and values of skin friction based on Ischebeck data



























#### **ULTIMATE SKIN FRICTION**

The ultimate geotechnical capacity of the soils can be determined from the following formula;

$$q_{usk} = \frac{R_{us}}{L\pi D}$$

Where:

R<sub>us</sub> = Ultimate Structural Capacity of the pile

L = Pile Length

 $\pi = Pi$ 

D = Diameter of the pile in contact with the soil

qusk = Ultimate Skin Friction (kPa)

| Pile   | Ultimate Skin Friction                              |               |       |       |
|--------|-----------------------------------------------------|---------------|-------|-------|
| Length | IT152                                               | IT <b>191</b> | IT196 | IT208 |
| m      | kPa                                                 | kPa           | kPa   | kPa   |
| 9      | 112                                                 | 89            | 56    | 40    |
| 12     |                                                     | 99            | 78    | 41    |
| 15     |                                                     |               | 77    | 50    |
| 18     |                                                     |               |       | 54    |
|        | Coloured cell indicates piles tested to steel yield |               |       |       |
|        | and provide approximate UGC                         |               |       |       |



#### Comparison with soils information



#### Site IT208

| Layer<br>Number | Soil Description                     | Layer position |  |
|-----------------|--------------------------------------|----------------|--|
| 1               | Clayey Sand, Loose                   | 0-0.6m         |  |
| 2               | Silty Sandy Clay                     | 0.6m-1.75m     |  |
| 3               | Clayey Sand, Loose                   | 1.75m-1.9m     |  |
| 4               | Gravelly Sand, Loose to Medium Dense | 1.9m-2.7m      |  |
| 5               | Clay, Stiff                          | 2.7m-4.25m     |  |
| 6               | Clayey Sand, Very Loose              | 4.25m-4.8m     |  |
| 7               | Clay, Firm                           | 4.8m-6.8m      |  |
| 8               | Sandy Clay, Firm                     | 6.8m-8.3m      |  |
| 9               | Clayey Sand, Very Loose              | 8.3m-13.7m     |  |
| 10              | Sandy Clay, Very Stiff               | 13.7m-13.9m    |  |
| 11              | Clayey Sand, Medium Dense            | 13.9m-15.9m    |  |
| 12              | Sand, Medium Dense                   | 15.9m-17 m     |  |
| 13              | Gravelly Sand, Medium Dense          | 17m-19.8m      |  |
| 14              | Sandy Clay, Hard                     | 19.8m-20.2m    |  |
| 15              | Sand, Medium Dense                   | 20.2m-20.5m    |  |

| Pîle   | Ultimate Skin Friction                              |               |       |       |
|--------|-----------------------------------------------------|---------------|-------|-------|
| Length | IT152                                               | IT <b>191</b> | IT196 | IT208 |
| m      | kPa                                                 | kPa           | kPa   | kPa   |
| 9      | 112                                                 | 89            | 56    | 40    |
| 12     |                                                     | 99            | 78    | 41    |
| 15     |                                                     |               | 77    | 50    |
| 18     |                                                     |               |       | 54    |
|        | Coloured cell indicates piles tested to steel yield |               |       |       |

and provide approximate UGC



#### Analysis was also done on:

- 1. Rate of advance for each lin.m of pile installed
- 2. Degree of use for the top hammer of the drill per lin.m



## From this information, we developed an approximation for capacity per lin.m related to the observed drilling conditions.

- 1. Rotary only no top hammer = W kN/lin.m
- 2. Top hammer < 2min/m = X kN/lin.m
- 3. Top hammer between 2 & 5min/lin.m = Y kN/lin.m
- 4. Top hammer greater than 5min/lin.m = Z kN/lin.m



## This value was factored down by a geotechnical reduction factor ( $\phi_g$ ) from Australian Standard AS2159-2009.





## Verification testing was carried out on each site



### Design, installation and testing feedback model was created for production pile installation







#### Some critical factors for success in using this model;

- 1. Design values need to be calibrated to the drill rig
- 2. Driller needs to have a clear set of instructions to understand the design intent. More than ever, they are in control of the end result
- 3. Supervision needs to be at a high level.
- 4. Client needs to understand the cost is not known until piles are installed





#### Main advantages

- 1. Enables projects to be undertaken where it may be impossible or cost prohibitive to obtain good geotechnical data
- 2. Speeds up delivery of a project by not having to wait for geotechnical data
- 3. The cost of the sacrificial test pile is equivalent to the cost of good geotechnical information but produces an arguably more reliable result





#### Main disadvantages

- 1. Difficult for owner to know the cost of a project and develop a reliable budget. They need to be committed to the project
- 2. Requires highly skilled crews and supervision
- 3. Can limit the number of bidders on a project due to the need to calibrate the design values against the drilling equipment



Thank you



