

Slope Stabilisation for the Thirlmere Aqueduct at Nab Scar

David Preece, Design Manger, Bachy Soletanche, UK

Introduction

- History of Thirlmere Reservoir and Aqueduct
- Original construction of conduit at Nab Scar
- Aqueduct issues at Nab Scar
- Requirements & restrictions
- Selected solution
- Design of spaced piles
- Effectiveness of works

History of Thirlmere Reservoir and Aqueduct

- Man made reservoir
- Water to support industrial revolution in Manchester

History of Thirlmere Reservoir and Aqueduct

- Connection established in 1894
- Mass unreinforced concrete
- 95 miles in length
- 180m @Thirlmere to 110m @Manchester
- Gradient 450mm to 1km (1 in 2200)
- 220 million litres of water per day
- Water speed 3 to 5 kph

in Cut and Cover.

SOIL

CONCRETE

Aqueduct issues at Nab Scar

- Inspections & investigations since 2005
- Series of spiral crack observed within the conduit & around arch barrel
- Opening of joint between slab and walls
- Torsional movement considered due to the movement of ground over top of conduit

Requirements & Restrictions

- No direct loading of the conduit
- Minimal vibration techniques
- No slope loading
- Monitoring of conduit and slope throughout works:
 - Hillside surface & ground at depth
 - Conduit position
 - Conduit internal cracks

SOLETANCHE BACHY

SOIL

CONCRETE

Selected Solution

• All about construct-ability

Design of spaced piles

- Determination of required stabilising force
- Determination of pile loads to provide required stabilising resistance force
- Layout of stabilisation works
- Development of load on A-frames
- Analysis results considering different models
- Micropile & cap dimensions

Design of spaced piles: determination of stabilising resistance force

- Slope stability analysis
- Circular slip and infinite slope analysis
- Back calculate soil and ground water parameters
- Establish required restoring force to provide increase stability FoS = 1.3

SOLETANCHE BACHY

FoS = 1.0; Slip depth: 2.5m, $\phi' = 45^{\circ}$, ground water: 1m b.e.g.l FoS = 1.3; restoring force = 250kN per m run of slope

Design of spaced piles: determination of stabilising resistance force

- Infinite slope & finite slope eqns
- FoS = 1.0 for existing case
- FoS = 1.3 with 250kN/m restoring force

saturated soil unit weight	γsat	20	kN/m³
unit weight of water	γw	10	kN/m³
angle of friction	φ	45	0
slope angle to horizontal	β	34	0
cohesion	С	0	kPa
	2.5	m	
depth to	1	m	
slope length, I		38	m
Restoring	250	kN per m	

 $\mathsf{F} = [\mathsf{c}/(\gamma_{\mathsf{sat}}.\mathsf{z}.\mathsf{sin}\beta.\mathsf{cos}\beta)] + [(\gamma_{\mathsf{sat}}-\{\gamma_{\mathsf{w}}.\mathsf{m}\})/\gamma_{\mathsf{sat}}].[\mathsf{tan}\phi/\mathsf{tan}\beta]$

$$m = (z - z_w)/z$$
 0.6

$$F = \underbrace{c.l}_{\gamma_{sat}.l.z.sin\beta.cos\beta} + \underbrace{(\gamma_{sat}.l.z.cos^2\beta - \gamma_{\omega}.m.z.l.cos^2\beta).tan\phi + H}_{\gamma_{sat}.l.z.sin\beta.cos\beta}$$

Design of spaced piles: Determination of pile loads to provide required stabilising resistance force

Design of spaced piles: Layout of stabilisation works

Design of spaced piles: Development of load on A-frames

- Arching check & development of load on spaced A-frames in response to hillside movement
- Function of:
 - Spacing
 - Cap width/pile diameter
 - φ'; c'; slip depth z

ΟLΕΤΑΠCHE ΒΑCHY

 Output: lateral load on pile cap & piles

$$p = cA \left(\frac{1}{N_{\phi} \tan \phi} \left\{ \exp \left[\frac{D_1 - D_2}{D_2} N_{\phi} \tan \phi \tan \left(\frac{\pi}{8} + \frac{\phi}{4} \right) \right] - 2N_{\phi}^{(1/2)} \tan \phi - 1 \right\} + \frac{2 \tan \phi + 2N_{\phi}^{(1/2)} + N_{\phi}^{-(1/2)}}{N_{\phi}^{(1/2)} \tan \phi + N_{\phi} - 1} - c \left(D_1 \frac{2 \tan \phi + 2N_{\phi}^{(1/2)} + N_{\phi}^{-(1/2)}}{N_{\phi}^{(1/2)} \tan \phi + N_{\phi} - 1} - 2D_2 N_{\phi}^{-(1/2)} \right) + \frac{\gamma z}{N_{\phi}} \left\{ A \exp \left[\frac{D_1 - D_2}{D_2} N_{\phi} \tan \phi \tan \left(\frac{\pi}{8} + \frac{\phi}{4} \right) \right] - D_2 \right\}$$

Rock outcrop

Design of spaced piles: Analysis results considering different models

Analysis	Tension pile force	Compressi on pile force	Individual pile bending moment / shear force	Pile cap moment		
Based on providing required restoring force of 250kN per m run:						
Slope restoring force structural frame model	541kN	628kN				
Slope restoring force elastic continuum model (Piglet)	531kN	635kN	27kNm / 20kN	784kNm		
Based on applied slope movement loads according to Ito & Matsui:						
Slope movement induced forces on pile caps: structural frame model	623kN	401kN				
Slope movement induced forces on pile caps: elastic continuum model (Piglet)	623kN	422kN	25kNm / 18kN	663kNm		

Design of spaced piles: Micropile & cap dimensions

- 225mm diameter micropiles 6.5m rock socket
- 168.3 x 10mm CHS from cap to 1m into competent rock
- Tension pile: 50mm
 Gewi bar
- Compression pile: 5
 40mm pre-stressing bar
- 40N/mm² grout

Effectiveness of works: Strain gauge results from inside conduit

Finished works

Conclusion

- A vital section of water infrastructure has been stabilised
- Early indications show the works to be effective
- Water continues to flow at Queen Victoria Jubilee Fountain in Manchester

