

Emergency Micropile Repair of the Birmingham Bridge

International Society for Micropiles 10th International Workshop Washington, D.C. September 23, 2010

Terence P. Holman, Ph.D., P.E.

CONSTRUCTION & GEOTECHNICAL SERVICES New Jersey • Florida • New York • Massachusetts • Pennsylvania • Delaware • Washington, DC

Outline

Introduction

- Development of Constructible Solutions
- Design of Micropile Retrofit
- Load Testing Program
- Micropile Construction
- Detailed Analysis of Load Tests

Introduction

- Birmingham Bridge is critical link in Pittsburgh area transportation system, built in early 1970s
- Pier 10S dropped 200 mm on 2/8/2008
 - Bearings over-rotated, pier columns cracked
 - Emergency shoring operation

Introduction

- Likely causes of failure:
 - Sudden punching failure of driven H-pile foundation
 - H-piles not bearing in sound rock as intended
 - Soft, broken "Red-Bed" claystone
 - Induction field (IF) testing
 - Factor of safety ≈1.0

Development of Constructible Solutions

- Complicated work zone geometry, 4.9 m clear space, 17 m vertical
- Construction techniques considered
 - 33 Micropiles with new below grade cap
 - 4 Drilled shafts through existing cap
 - 33 Micropiles with at-grade cap
 - Selected to eliminate impact on shoring towers
 - Ability to drill through existing concrete cap

Development of Constructible Solutions

LRFD Loads at top of new pile cap

	Strength III and I		Serv	vice I
	Minimum	Maximum	Minimum	Maximum
Axial Load (MN)	19.8	32.5	16.7	21.7
Transverse Moment (MN-m)	0.8	7.9	1.2	2.6
Longitudinal Moment (MN-m)	0.4	8.4	2.0	5.1
Transverse Shear (kN)	89.0	996.4	160.1	355.9
Longitudinal Shear (kN)	35.6	391.4	89.0	177.9

LRFD Loads for each of 33 new micropiles

	Static Load	Load Group	
Axial Compression Resistance (kN)	1355	Strength I	
Max. Design Pile Axial Load (kN)	1196		
Axial Uplift Resistance (kN)	0	Strength III	
Max. Design Axial Uplift Load (kN)	7		
Pile Lateral Resistance (kN)	33	Strength III	
Max. Design Pile Lateral Load (kN)	33		

Development of Constructible Solutions

- Desired micropile section for rapid procurement and construction
 - Cased length to rock, 194 mm OD
 - Rock socket in competent rock at or below Elev. 203
 - Reinforcement designed for compression loading

LRFD Design of Micropiles - Structural

PennDOT design specifications

Cased Length to Rock

$$R_{cc} = \phi_{cc} R_n = \phi_{cc} \left[0.85 f_c A_g + F_{yc} A_c \right]$$

$$R_{cc} = 0.65 \left[0.85(27.6MPa)(0.0192m^2) + (552MPa)(0.00723m^2) \right]$$

$$R_{cc} = 2.89MN = 2,890kN >> 1,196kN$$

Bond Zone/Rock Socket

$$R_{cu} = \phi_{cu} R_n = \phi_{cu} \left[0.85 f_c A_g + F_{yb} A_b \right]$$

$$R_{cc} = 0.65 \left[0.85(27.6MPa)(0.0151m^2) + (552MPa)(0.00317m^2) \right]$$

$$R_{cc} = 1.37MN = 1,370kN > 1,196kN$$

LRFD Design of Micropiles – Rock Socket

- Expected ult. bond shear stress α_b 520-1,380 kPa, 1,034 kPa chosen for design
- Calculate required bond length for 152 mm min. diameter
- PennDOT design specifications

 $Q_r = \phi_s Q_s = \phi_s \pi d_b \alpha_b L_b = (0.60 to 0.80)(\pi)(0.152m)(1,034 kPa)(L_b)$

 Required rock socket length 3.4 to 4.6 m depending on \u03c6, design length of 4.27 m chosen

An Unexpected Problem at Pier 10N

- Bearing over-rotation
- No obvious damage to pier column or substructure
- Existing crash wall to be left in place
- 22 new micropiles designed and specified with greater strength limit design resistance
 - Re-ran load test to higher test loads

Load Test – Construction of Test Pile

- Sacrificial test pile and anchors
- Test pile installed using concentric overburden system
 - Rock socket diameter incr. to 197 mm
 - Cased length 22.8 m, 4.9 m bond length

Compression Load Test – Part I

- Cyclic load test
- "Design" load taken to be 890 kN, test load 1780 kN
- Acceptable settlements observed
 - 11.4 mm at DL
 - 28.6 mm at TL
 - 2.5 mm at AL (residual)

Compression Load Test – Part II

- Re-test of original test pile to substantiate higher design load of 1,280 kN for Pier 10N with intention to test to failure
 - Max. test load 3,180 kN
 - Total settlement 18 mm at DL, 54 mm at TL, approx. 3 mm residual.

Production Micropile Construction

- Began work at Pier
 10S pre-drilling
 through existing pile
 cap
 - DTHHs, overburden systems
 - Only single layer of reinforcement at cap bottom
- Average total pile length of 25.6 m

Production Micropile Construction

Production Micropile Construction-Connections

■ Pier 10S→ conventional bearing plate connections

■ Pier 10N→ Need to tie micropiles into existing cap and crash wall with posttensioning bars

Pile Performance Evaluation

- Cyclic load tests offer opportunity to examine pseudoelastic behaviors
 - Separated elastic and residual displacement
 - Apparent elastic length of total pile and in rock socket
 - Incremental load transfer behavior

Pile Performance Evaluation

- Total elastic length calculated using net applied load, assumed constant E_pA_p
- Decomposition possible to separate rock socket behavior

Pile Performance Evaluation

- Apparent elastic length data can be used to estimate mobilized uniform bond stress within rock socket
- Note that L_e did not approach cased pile length until net load of 844 kN applied
 - Very significant load was transferred from casing to surrounding soils (up to ¹/₄)

	Net Pile Top	Net Load at Top		Calc. LTR	Calc. Ave.
Load Cycle	Load (kN)	of Socket (kN)	Calc. L _{es} (m)	(kN/m)	τ _{mob} (kPa)
	844.3	0.0	0.00	-	-
Initial	1244.3	399.9	1.85	216	349
	1733.1	888.8	2.64	336	543
	512.4	0.0	0.00	-	-
	1217.0	704.6	1.35	522	843
Re-Test	1793.5	1281.1	2.46	521	841
	2498.1	1985.7	3.19	623	1007
	3116.4	2604.0	3.84	678	1095

Summary

- PennDOT's willingness to engage with GC and specialty contractor for development of constructible solution was critical to success
- Testing to structural limit of reaction frame and pile allowed for verification of much larger loads for addl. unanticipated condition at Pier 10N
- Cyclic load testing, while not preferred over strain gauge usage, provided insights into nature of "elastic" behavior of pile sections and the resulting load transfer between pile and rock

Acknowledgements

- PennDOT District and Central Office Engineering and Construction personnel
- Trumbull Corporation
- HDR Engineering

CONSTRUCTION & GEOTECHNICAL SERVICES New Jersey • Florida • New York • Massachusetts • Pennsylvania • Delaware • Washington, DC

MORETRENCH.C