International Workshop on Micropiles Washington, D.C. 22 – 25 September 2010

UTILIZATION OF MICROPILES FOR HEAT EXCHANGE

By

Sherif Lotfy Abdelaziz

Ph.D. Student Virginia Tech

Lizzi Scholarship Recipient 2010

What this presentation is about?

- Introduction
- Micropiles and Geothermal Energy
- Challenges of Energy Micropiles
- Virginia Tech on the road
- What is next?
- Summary

- Introduction
- Micropiles & **Geothermal Energy**
- Challenges
- Virginia Tech test
- •What is next?
- •Summary

Replace deep foundations

Slope Stability

Underpinning

Side Support & Earth Retention

- Introduction
- Micropiles &Geothermal Energy
- Challenges
- Virginia Tech test
- •What is next?
- •Summary

Micropiles as Heat Exchangers

- Introduction
- Micropiles &Geothermal Energy

- Introduction
- Micropiles & Geothermal Energy
- Challenges
- Virginia Tech test
- •What is next?
- Summary

Micropiles for Energy Utilization

- circulation tubes
- Heat pump
- Geothermal fluid (water & antifreeze mix.)

- Introduction
- Micropiles & Geothermal Energy
- Challenges
- Virginia Tech test
- •What is next?
- Summary

Micropiles for Energy Utilization

- Introduction
- Micropiles & Energy
- Challenges

Challenges for the use of Micropiles as GHEX

Load carrying mechanism

- Introduction
- Micropiles & Energy
- Challenges

Challenges for the use of Micropiles as GHEX

Load carrying mechanism

- Introduction
- Micropiles &Geothermal Energy
- Challenges
- Virginia Tech test
- •What is next?
- Summary

Challenges for the use of Micropiles as GHEX

Long term thermal cycle loading effects

- Introduction
- Micropiles &Geothermal Energy
- Challenges
- Virginia Tech test
- •What is next?
- Summary

Challenges for the use of Micropiles as GHEX

 Overall thermo-mechanical response in short-term as well as long term

Group effect under thermo-mechanical loads!!!!!

- Introduction
- Micropiles &Geothermal Energy
- Challenges
- •Virginia Tech test
- •What is next?
- Summary

Virginia Tech Field Test

Different tubes, tube configurations.

- Introduction
- Micropiles &Geothermal Energy
- Challenges
- Virginia Tech test
- •What is next?
- Summary

I Militario

Micropiles for Energy Utilization

Virginia Tech Micro-pile Construction

Drilling

ISM Workshop, D.C. 23 September 2010

Installing Tubes

- Introduction
- Micropiles &Geothermal Energy
- Challenges
- Virginia Tech test
- •What is next?
- Summary

Micropiles for Energy Utilization

Virginia Tech Micro-pile Construction

Pressure test

Instrumentations

- Introduction
- Micropiles &Geothermal Energy
- Challenges
- Virginia Tech test
- •What is next?
- Summary

Micropiles for Energy Utilization

Virginia Tech Micro-pile Construction

Grouting

- Introduction
- Micropiles &Geothermal Energy
- Challenges
- Virginia Tech test
- •What is next?
- Summary

What is Next?

- Running field test
 - Thermal test
 - Thermo-mechanical test
- Numerical modeling and use of the field data for calibration purposes
- Generalization the results
 - Other field tests,
 - Laboratory thermomechanical tests on different soils

- Introduction
- Micropiles &Geothermal Energy
- Challenges
- Virginia Tech test
- •What is next?
- Summary

Summary

- Micropiles are being used for different purposes, why not Geothermal?
- Different challenges need to be addressed and studied
- Field tests are the best way to investigate things to be built insitu
- Results will be available once field test is performed.

Generator of record High-temperature, high-oressure and long to load (Aufdrag)

Required GHEX Length (L)

$$\frac{1277}{\left(\left(\frac{32}{4}\right) + 22 \text{ource out}\right) } \frac{1277}{\left(\left(\frac{32}{4}\right) + 22 \text{ource out}\right) / 2\right) - \frac{32}{4}}$$

Where:

G: Mass flow rate of circulation fluid (lb/hr)

 C_p : Specific heat of circulation fluid (Btu/lb/F)

Tground: Undisturbed ground temperature

Tsource,in: Temp. of the fluid entering ground loops

Tsource,out: Temp. of the fluid leaving ground loops

酒酒: Total thermal resistance of GHEX

G, cp, and Tground are in fact constant known parameters for a specific design

Compressor Low-temperature gas Low-temperature ga

Required GHEX Length (L)

 Tsource,out controlles efficiency of the heat pump. Typically choose;

Tsource,out = Tground + (20 to 30F) for summer

Tsource,out = Tground - (10 to 20F) for winter

Assuming coefficient of performance (COP)
 between 2 and 4, then Tsource,in by;

D: density of circulation fluid

f: volumetric flow rate of circulation fluid

W: watts of electrical power entering heat pump

Required GHEX Length (L)

Water/antifreeze mixture properties UNKNOWN

from COP

related to
Tground

Site specific (uncontrollable)

Therefore, the less the resistance the less the required length (L)

Total Resistance of the GHEX

Total Resistance of the GHEX

$$\begin{array}{c} \boxed{3110} = \boxed{32_{max}} + \boxed{32_{max}} + \boxed{32_{max}} \\ + \boxed{32_{max}} + \boxed{32_{max}} + \boxed{32_{max}} \\ \text{Site specific} \\ \text{(uncontrollable)} \\ \hline 0.5 \\ \hline \pi d_i h_i \end{array} \\ \begin{array}{c} 0.5 \\ \hline 100 \\ \hline 2\pi \lambda_p \end{array} \\ \hline \begin{array}{c} 1 \\ \hline 2\pi \lambda_g \end{array} \ln \left(\frac{d_b}{\sqrt{2} d_o} \right) \end{array}$$

where;

di: inner diameter of the tube

do: outer diameter of the tube

db: borehole diameter

 λ_p , and λ_g : thermal conductivities of tube and grout, respectively

Total Resistance of the GHEX

- Since changes in d_o , d_i , and λ_p is not significant for typical applications. Then, only R_{grout} can be reduced.
- Using thermal grout increases
 λ_g.
- Smaller db gives lower Rgrout.
- Then, micropiles are better than large diameter piles or caisons

