### Micropiles in Middle Age: Triumphs, Failures and Challenges



Dr. Donald A. Bruce - Honorary Chairman, ISM 5<sup>th</sup> Lizzi Lecture, London, UK Monday, May 11, 2009

### Structure of Presentation

- 1. INTRODUCTION
- 2. TRIUMPHS AND POSITIVES
  - 2.1 Project Specific (U.S. focus)
  - 2.2 Technology Development
  - 2.3 Codes and Standards
  - 2.4. Research/Development/Teaching
- 3. FAILURES AND DISAPPOINTMENTS
  - 3.1 Project Specific (U.S. focus)
  - 3.2 Codes and Standards
  - 3.3 Research/Development/Teaching
- 4. CHALLENGES
  - 4.1 Commercial
  - 4.2 Technical
  - 4.3 ISM
- 5. DEDICATION



## **1. INTRODUCTION**

### Passages of Life

- Technology conceived in 1952
- First major "growth spurt" 1960-1975
- General "plateau:" 1975-1990
- Second little "growth spurt:" 1990-1995
- International cooperation begins 1994 ("mid-life crisis")
- Maturity combined with rapid growth: 1995 to present day



## **1. INTRODUCTION**

### Warnings

- There have been "bumps in the road," caused by both internal and external factors: these will doubtless happen again.
- Current extreme global financial volatility has the potential to confound even our best plans and intentions.
- Time to Reevaluate
  - Fundamental reassessment of our life so far.
  - Provides basis for future plans and concepts.



2. TRIUMPHS AND POSITIVES 2.1 Project-Specific Progression (limited to U.S. examples only)



| Year    | Project                | Notable Feature                              |
|---------|------------------------|----------------------------------------------|
| 1984    | Boylston St. MA        | 40- to 50-ton micropiles!                    |
| 1986-87 | Coney Island, NY       | Systematic use of "left-in" casing           |
| 1989    | Union Station, DC      | 70-ton cased micropiles                      |
| 1990    | Pocomoke RB, MD        | 200-ton ultimate load, preloaded             |
| 1992    | Vancouver, WA          | 300-ton ultimate load, structural failure    |
| 1997    | Williamsburg Br., NY   | Huge, high capacity project                  |
| 1998    | Mandalay Bay Hotel, NV | Emergency stabilization of failing structure |
| 2001    | Richmond SR Br., CA    | 700-ton micropiles in marine conditions      |

### 2. TRIUMPHS AND POSITIVES 2.1 Project-Specific Progress U.S. examples only)

| Year | Project                         | Notable Feature                                                           |
|------|---------------------------------|---------------------------------------------------------------------------|
| 2004 | IBM Bldg., NY                   | High capacity, fast track project in karst                                |
| 2004 | Several                         | "Macropiles" to 1,400 tons                                                |
| 2005 | Joplin, MO                      | Systematic pretreatment of karst                                          |
| 2006 | Utah State Capital Bldg.,<br>UT | 3,000 micropiles for seismic retrofit.                                    |
| 2007 | Barbados, WI                    | Wellit's the Caribbean. (During the Cricket<br>World Cup, coincidentally) |

### 2. TRIUMPHS AND POSITIVES 2.2 Technology Development

### Drilling

- Power of rigs
- Flexibility of rigs
- Environmental compliance
- Overburden drilling systems
- MWD
- Jacked systems
- Grouting
  - Mixing and pumping equipment
  - Multicomponent grouts
  - Real-time control of parameters
  - Pressure grouting (Types B, C and D)
  - Fluid property testing



### 2. TRIUMPHS AND POSITIVES 2.2 Technology Development

### Reinforcement

- Permanent casing
- Hollow bars (underpinning, slope stability and embankment stabilization)
- Composite sections (high capacity, lateral stiffness)
- Load Testing
  - Cycling
  - Preloading
  - Analytical capabilities



### 2. TRIUMPHS AND POSITIVES 2.3 Codes and Standards, etc.

- Mass Code (1984)
- U.K. Specifications (1987)
- FHWA State of Practice (1994-1997)
- FHWA Implementation Manual (2000) ("Referenceable Standard")
- DFI Specification Document (2000)
- ADSC/DFI Joint Committee on Micropiling
- ADSC Direct Support of ISM after FHWA
- Japanese Documents (especially on seismic design)
- Various European National Documents (especially from France and Germany, and Nordic Countries)
- More Recent Euronorm Documents



### 2. TRIUMPHS AND POSITIVES 2.4 Research, Development and Testing

- Systematic Field Testing (by Contractors) 1952-present
- FOREVER
- Japanese Research



- Turku University of Applied Sciences Research and Compilations (Dr. Lehtonen)
- ADSC-Sponsored Research (e.g., hollow bars, buckling, threads)
- Polytechnic University of Brooklyn (studies and translations)
- Reference Lists and Database (Dr. Herbst)
- University of Pittsburgh Research (John Kenny)

### 2. TRIUMPHS AND POSITIVES 2.4 Research, Development and Testing

- University of Krakow
  Research
- University of Missouri Research (Erik Loehr)
- Cornell University Research (James Mason)
- Short Courses by



- ISM
- NHI
- Private Sponsors (e.g., 2006)
- ADSC GeoCubed 2005
- Miscellaneous ADSC "White Papers" (e.g., Cadden and Gomez)



### 3. FAILURES AND DISAPPOINTMENTS

## 3.1 Project Specific (U.S. only)

- Micropiles in karst (unfair distribution of contractual responsibility)
- Failures in sandy terrains (improper drilling and grouting techniques)
- Disappearance of Fondedile from U.S. market in late 1980's
- Ignorance, still, in certain market segments about micropiles
- Outcome of U.S. Army Marine Corps work in 2000 (Networks)
- Quiet/flat markets in Western Europe in general
- Poor specifications/no consistency
- Very few Case 2 structures



# 3. FAILURES AND DISAPPOINTMENTS

### **3.2 Codes and Standards**

- No truly international agreement/unified document (but is one needed or indeed feasible?)
- No guidelines on Type 2 design
- Disconnect between Contractor and Engineer during the construction phase

### **3.3 Research/Development/Teaching**

- Very little research or teaching at University level
- U.S. States Pooled Funds Project
- Generally poor links between practice and academia (notable exceptions)
- Little impact by Professional Societies, as opposed to Trade Associations



### 4. CHALLENGES

## 4.1 Commercial

 Expand activity levels in
 existing markets (marketing, new technical developments, education)



- Expand the geographic markets (Middle East, South Africa, etc.)
- Increase competitiveness relative to "traditional" alternatives (e.g., driven piles)
- Maintain quality standards (qualifications and experience of <u>all</u> parties)
- Enhance "green" image and capability
- Increase levels of automation
- Develop more appropriate and responsive contracting vehicles, including equable risk sharing

## 4. CHALLENGES

## 4.2 Technical

- Unravel "Networks" mystery (at last!)
- Sponsor multidisciplinary/ multinational research projects



- "Teach the teachers" (e.g., ADSC Faculty Workshop)
- Teach more teachers (the best friend of a specialty contractor is an educated owner)

### 4.3 ISM

- Increase membership levels
- Reassert relevance (and value for money)
- Maintain enthusiasm levels
- Assert industry leadership
- Keep increasing memberhip levels

### 5. **DEDICATION**

As always, we dedicate this conference to the vision of <u>Dr. Fernando Lizzi, and the spirit he has left in all of us as</u> we try to follow his footsteps in the world of micropiles.



Dr. Fernando Lizzi (1914-2003)