

Green Siesta

Micropiles – The Green Choice?

James Amos Technical Engineer BBGE

A Balfour Beatty Company

What is Sustainability?

The Challenge?

" Carbon Accounting is the future of Sustainable construction. With increasing Legislation being introduced it is imperative that companies keep looking to lesson their carbon Footprint"

Ground Engineering 2008

An Introduction to Green Siesta

Developed in-house by BBGE Acronym for Stent Integrated Estimating Application Drivers; Supply chain pressures **Balfour Beatty** Corporate responsibility Group Fuel costs Escalating landfill tax **Balfour Beatty** Planning conditions **Ground Engineering** Public/Customer awareness **Balfour Beatty Pennine Branlow** Testal Stent GeoEnvironmental

An Introduction to Green Siesta

Stent Sie	sta										
LDP Estimate	LDP 11930/1/35	Rev O		15:18 25	5 September 20	08 About 🤞	Print	page 📇 Print Rej	port 🛐	Notes 🎇 🛛 Calc	Close
	Scope	A		B	<u>c</u>		D	Ē	1	Summa	ry
	Description					Seca	nt wall			Max. rigs 3	amme
scope	Type of pile	Bearing	Bea	iring	Bearing	Male		Female		Prog.duration 2.	.8 wks
2	Nominal Diameter (mm)	600mm	600	mm	650mm	600m	m	600mm		Con	crete
Tasouroas	Number of piles	40	10		10	10		9		Female 10N	£70.00 A
resources	Average bored length (m)	22m	22m	I	11m	22m		22m		Guide wall	£65.00
	Average concrete length (m)	21.50m	21.5	50m	10.50m	21.50	m	21.50m			×
timeline	Max bored length (m)	22m	22m	1	11m	22m		22m		Total volume 50)4 m3
	Total bored length (m)	880m	220	m	110m	220m		198m		Total cost E3	35,086
materials	Avg cut-off level below ppl	0.50m	0.50)m	0.50m	0.50m	1	0.50m		Main	eel Hel/Lnk
	Total concrete length (m)	860m	215	m	105m	215m		193.50m		Tonnes 6.61t	0.54t
世特	Design load (kN)				1.000.000.000.0					Av.£/t £588	2585
cages	+ Temporary Casing (m)	1m	1m		1m	1m		1m		Total £3,887	£317
a	+ Permanent Casing (m)		1		1		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Cent.ba	ars Steel Col.
steel	Boring Dry / Wet	Wet	Dry		Dry	Dry	2	Dry		Tonnes U.UUt	
800	Overpour	1.20m	0.40)m	0.40m	0.40m	1	0.40m		AV.27(20	0
4 2	+ Under Ream	Г			П	Г		Г			
subcontract	Theoretical Concrete Volume	243m3	61m	13	35m3	61m3		55m3		Prod	uction
- T	⊕ B	earing 💮	Secant 💽	Contig (1)	King Post (Plg Col 🚷 (Copy 🗙 De	lete K	1	Tot bored m	9
testing	Cages Allocated to pile A	(40 out of 40	allocated)							Tot conc m 1	,588.50m
Ö	Cage Description Pil	e diameter To	al weight El	fective Length	Projection	Total Length	Quantity	~		Piles/day 5	.7
summary	CT-11 60	0. 0.	16t 9	.2m	0.8m	10m -	40	Automatically update cage gua	intity	per day	
								if the number of p	oiles	Current total val	ue
BOQ 🔽								 Assign Cages 		£405,815	5.89
										A Balfour Be	atty Company

Available Techniques:

- CFA
- Pre-cast
- Sheet
- Rotary bored

In development:

- Micropile
- Bottom Driven

An Introduction to Green Siesta

Key issue identified from a 2007 survey of Clients:

'The need for clarity about sustainability and an understanding of the environmental impact of foundations, particularly in terms of reducing carbon emissions.'

It was decided a process was required that evaluated this aspect of our operations as easily as we assessed other environmental issues such as noise and vibration.

Green Siesta

How was this to be achieved?

- Already had Siesta which uses a library of costs.
- Which put simply:
- Unit Rate * Material Quantity * Productivity = Total Cost

Reasoned same approach could be used to calculate carbon emissions for a project.

Confident Siesta could be modified to include a 'carbon calculator'

Difficult task was to identify and quantify the carbon significant elements of site operations.

Green Siesta

Identifying CO2 Emissions

Consultant: **NIFES** National Industrial Fuel Efficiency Ltd

WBCSD World Business Council for Sustainable Development Green House Gas Protocol - a Corporate Accounting and Reporting Standard

The Carbon Trust UK

The Source of CO2 Emissions

ENERGY

- •Concrete (60-70%)
- Steel (10-30%)
- Fuel (10-15%)

Quantifying: Cement

Large variation - plant type, fuel, age etc.

Lafarge Cement UK

Plant	Kg CO2/te
Aberthaw, S.Wales	703
Cauldron, Staffordshire	740
Hope, Derbyshire	760
Dunbar, East Lothian	810
Cookstown, N.Ireland	820
Northfleet, Kent	960
Westbury, Wiltshire	970

Quantifying: Cement

Different types of Portland cement from the ICE report

Method	Kg CO2/te
Wet kiln	970
Semi-wet kiln	930
Dry kiln	740
Semi-dry kiln	840

Siesta uses a NIFES advised average of 777 kg CO2/te

Replacement	Description	Kg CO2/te
Portland Ash cement	25-30% fly ash	585
Portland Slag cement	80-94% clinker, 8% slag	755
Portland Slag cement	20-34% clinker, 64-73% slag	279

Quantifying: Cement Replacement

London Concrete

Material	Source:	CO ₂ from Transport	Embodied CO_2	Total CO ₂ kg/te
PFA	West Burton	19.39	30	49.39
GGBFS	Purfleet	1.81	89	90.81

Civil and Marine: GGBFS 70 kg CO2/te UK Quality Ash Association: PFA 25 kg CO2/te

Siesta uses NIFES recommended figures of:

Replacement	CO2 kg/te
GGBFS	89
PFA	25

Quantifying: Sand, Aggregate & Water

Figures Collated by NIFES

Material	kg CO ₂ /te	Data source
Sand & gravel	3.45	from Tarmac (UK average)
Crushed rock	3.23	from Tarmac (UK average)
Aggregate	3	from Hanson (UK average)
Crushed stone	3.40	from London Concrete
Sand (marine dredged)	7.79	from London Concrete
Sand (land-based)	3.49	from London Concrete

Water supply: 289 kg CO2 per 1 Million litres (from the trade body Water UK)

Quantifying: Steel Bar & Rod

Туре	Typical (UK market) kg CO ₂ /te	Primary material kg CO ₂ /te	Recycled material kg CO ₂ /te
General	1,820	2,820	450
Bar and rod	1,720	2,680	420

Problem: How to identify the source? How much is recycled?

Siesta uses the "typical" figure for auger bored and the "recycled" figure for Precast.

When considering steel for this exercise the typical value of 1,820kg CO_2 /te was taken.

Quantifying: Fuel

Diesel: 2.630 kg CO2/litres - excludes indirect emissions (from DEFRA)

- Fuel use on site
- Transport of materials
- Mobilisation/ Demobilisation
- Spoil removal

Siesta approximates site fuel use from the Net Sales Value & the total fuel use for each technique per year

Quantifying: Fuel

Transport of Materials

Activity	Vehicle type	Load	Distance	Composition	Kg CO2 Per trip
Readymix	Rigid HGV	6m3	32km round trip	100% urban	17.23
Steel & Precast piles	Artic. HGV	24te	480km round trip	20% urban 40% rural 40% motorway	493.20
Reinforcement Cages	Artic. HGV	8te	480km round trip	20% urban 40% rural 40% motorway	493.20

Based on figures from National Atmospheric Emissions Inventory

Quantifying: Fuel

Mobilisation / Demobilisation & Spoil Removal

Calculated in similar way & depends on distance:

Type of transport	Type of vehicle	Kg CO2 / km
General transport to site	Light Goods Vehicle	0.287
Machine delivery	Articulated HGV	1.022
Spoil removal	Rigid HGV	0.829

How Green Siesta calculates the CO2

Stent Sie	esta						
CFA Estimate	CFA 22679/1/1 Rev 0 60 Lin m Secant wal	26 CFA Load Bearing Piles	15:57 27 June 2008	About 📥 🛛 Pri	nt page 📇 Print Report	😰 Notes 🕅 Calc 📰 🛛 Close	
details	Carbon Assessmer	nt				Programme Ø No. rigs 1	
	Concrete 126.87 te	Concrete Steel Spoil Fu	uel/Mob/Overhead			Mobilisation 0.40 wks	
scope	Steel 55.15 te	Source of Portland Cement	/erage		•	Production 2.00 wks	
	Spoil 8.39 te	Aprox.dist.to batching plant	miles Average wag	gon load 5.5 m3	(rigid HGV 100% urban)	5 Total 2.40 wks Concrete Volume / Cost	
production	Fuel/Mob/OH	Mix	Male	Female	Guide wall	Male 776.51 m3 £88.00 Female 286.28 m3 £84.00	Carbon
resources		Strength Chemical class	DC-2	C8/10 DC-1	DC-1	Total 1062.79 m3	Calculation
		Cementitious (kg/m3)	415 kg	300 kg	305 kg	Main Hel/Lnk Cent	Screenshot
materials		Туре	GGBFS	GGBFS	GGBFS	Total 31.74t	from CFA
		Sand (kg/m3)	845 kg Land-based	950 kg Land-based	852 kg Land-based	Av £/t £811.10 Weekly Plant & Labour	
A	Concrete 62%	Gravel/Aggregate (kg/m3)	845 kg Crushod stopo	975 kg Crushod stopo	1075 kg Crushad stopa	Plant £8,255 Labour £9,098	
U testing	Spoil 4%	Water	210 kg	172 kg	165 kg	Total £17,353	
Ò		CO2 kg/m3	128.47 kg	54.02 kg	180.71 kg	Num piles 107	
summary		Transport CO2	973.04 kg	358.73 kg	71.05 kg	Av. conc len 13.77m Tot conc len 1473m	
		Total CO2 (tonnes)	100.73 te	15.82 te	10.32 te	Piles/day 10.7	
	Print Carbon Assessment	NOTE: Emissions due to the tran	nsport of raw materials to	the batching plant are c	urrently unknown.	Max (av) m3 per day 121.0 (106.3) m3	
carbon	Total CO2 203.06 te	Concrete		Total CO2	2 126.87 te	£268,787.00	
						A Balfour Beatty Company	

Example CO2 Bills of Quantities

Concrete 62 %

Fuel & Mob 6 %

Steel 27%

Spoil 4%

Stent CFA Carbon Assessment

Head Office & Southern Office PavillionC2,AshwoodPatk, AshwoodWay,Basingstoke RG238BG Tel01256400200 Fax01256400201

Summary

Approximate tonnes of carbon dioxide embedded and emitted:

Concrete	126.87 te	(includestransport)	
Steel	55.15 te	(includes transport)	(
Spoil	8.39 te	(transportonly)	1
Fuel & Mob.	12.65 te		
Total CO ₂	203.06 te		
	80		×

Breakdown

Concrete

Concrete Mix	Strength/Class	Replacement	CO2Kq/m3	Volume	Transport CO2	Total CO
Male	C28/35 DC-2	70% GGBFS	128.47 kg	776.51 m3	973.04 kg	100.73 te
Female	C8/10 DC-1	90% GGBFS	54.02 kg	286.28 m3	358.73 kg	15.82 te
Guide wall	C20/25 DC-1	30% GGBFS	180.71 kg	56.7 m3	71.05 kg	10.32 te

Estimate: 22679/1/1-CRA

Ireparel: 27/06/2008

Project:

Tender:

GrosvenorWaterside,BlockA,London,SW1W8QN

60 LinmSecantwall & 26 CFA LoadBearing Piles

Transport carbon is based on the batching plant being approximately 4 miles from site with an average load of 5.5 m3 perwagon. Round trips are assumed by a rigid HGV and 100 % urban driving.

Steel

Reinforcement	Embedded CO2	No.cages	Transport CO2	Total CO2
31.74 te	54.6 te	67	0.55 te	55.15 te

Embedded carbonis based on a UKmarket average for steel bar and rod of 1,20 C 0.4gAe Transport carbonis based on age Athonican being approximately 60m lass from site with an average load of 20 cages perwagon. Round trips are assumed by an articulated HCV with 40 % urban, 40 % rural and 20 % motorway driving. Carbon emissions from the fabriculation of the cages are not included.

Spoil

Total Spoil	Av.m3 per wagon	Av haulage distance	Total CO2
924.86 m3	9.5 m3	50 miles	8.39 te

Round trips are assumed by a rigid HGV/with 50 % rual and 50 % urban driving.

Fuel

Estimated diesel use: 4,808 litres Direct CO2 emission = 12.65 te Based on DEFRAdata which currently excludes emissions from the manufacture of the fuel itself

Mobilisation

No.articulated HGV's: 0 No.rigid HGV's: 0 Approx.mob.distance: 150 miles Transport CO₂= 0 te Round trips are assumed by an articulated HGV with 40 % urban, 40 % rural and 20 % motorway driving.

Stent Procast

Head Office & Southern Office ParillionC2, AstwoodPath, AstwoodWayBasingstoke RG238BG Tel01256400200 Fax01256400201
 Brinnarie
 22741/1/1PRE

 Brojett:
 25-27RoseKihLane,Reading,Benkshire

 Tender:
 275sepilesingrave1

 Bregared:
 27/06/2008

Summary

Approximate tonnes of carbon dioxide embedded and emitted:

Breakdown

Concrete

Strength	/Class	Replac	ement	CO 2Kq/m 3	Volume	Total CO 2
C45/20	DC-3	25%	PFA	291.24	204.84m3	59.66 t
Transport	oftherawr	naterials fo	or the conc	rete to the precast fa	actory are included in	n the calculation

Steel

	Total weight	CO 2Kate	Embedded CO2
Reinforcement	19.8t	420	8.31 t
Pile joints	Ot	420	Ot

Embedded oarbon is based on steel bar and rod manufactured in the UK from sorap steel" at 420 C0, kgAe Carbon emissions from the fabrication of the joints and cages are not included.

Pile Transport

Number of wagons: 20 Approx.transport.distance: 150 miles Transport CO₂= 9.86 t Round trips are assumed by an articulated HGV with 40 % urban, 40 %

Fuel

Estimated diesel use: 1,709 litres Direct CO2 emission = 4.49 t Based on DEF RAdatawhich currently excludes emissions from the manufacture of the fuelitself.

Mobilisation

No.articulated HGV's: No.rigid HGV's: Approx.mob.distance: 150 miles Transport CO₂=0 t Round tripsare assumed with 40 % urban, 40 % rural and 20 % motorway driving

Calculations are based on figures provided for Stent by Nifes Consulting Group www.nifes.co.uk

- Proposed construction of a lightly loaded two storey structure on an elevated section of walkway.
- Particularly difficult site constraints underpass immediately north and embankment to south.
- Ground Conditions Thickness of Made Ground and likely occurrence of obstructions
- Column Loads of 250kN

Balfour Beatty Ground Engineering

 ALL LOCATIONS AND LEVELS ABOVE ARE TO BE TAKEN AS VERY INDICATIVE ONLY.

Typical Geological Model:

Stratum	Level of Top of Stratum mAOD	Level of Top of Stratum mBGL	Typical Thickness m	Typical Description
Made Ground	104.7	Ground Level	8.5	Brown and grey sandy fine to coarse angular and subangular gravel sized fragments of sandstone, siltstone, brick, chert, quartz and concrete.
River Terrace Gravels	96.2	8.5	4.7	Medium Dense brown fine to coarse SAND and fine to coarse angular to rounded GRAVEL of chert, quartz, sandstone and siltstone. Occasional cobbles.
London Clay	91.5	13.2	Proven to 16.8m	Stiff brown slightly sandy CLAY.

Groundwater was recorded at 100.0mAOD (approximately 5.0mBGL)

Design Profiles Vs Elevation:

Made Ground

London Clay

Design Considerations

• Three options considered for carbon assessment comparison:

Туре	Diameter	Diameter Length F.O.S.		S.W.L	Testing
	mm	m		kN	
Micropile	40/16 hollow bar with 175mm clay bit	13.3	2	250	Non working pile test
Bottom Driven	220	11.0	2.5	250	Dynamic pile test
Auger Bored	300mm	20.5	3	250	None

It should be noted that this exercise is solely for the comparison of carbon dioxide emissions for various restricted access piling methods.

A micropile solution for this project was chosen based on the following advantages - programme, limited spoil generation and the ability to overcome the anticipated obstructions in the Made Ground.

Quantity of Materials Per Pile for Each Method:

Туре	Grout / Concrete	Steel	Spoil	Fuel	Mobilisation
	te	te	m³	litres	
Micropile	1.02 Grout	0.1	0.4	23	1 No. Rigid HGV
					Approximate mobilisation distance 352 km
Bottom Driven	1.2 Readymix	0.24	none	28.5	1 No. Rigid HGV
					Approximate mobilisation distance 352km
Auger	2.50 Grout	0.024	1.8	150	1 No. Articulated HGV
Bored					1 no. Rigid HGV
					Approximate mobilisation distance 352km

Micropile (40/16 Hollow Bar) Bottom Driven (220mm) Auger Bored (300mm) Concrete 15% Mobilisation Mobilisation Mobilisation 23% 24% 35% Grout 53% Grout 60% Fuel 4% Fuel 13% Spoil 4% Steel 42% Steel 13% Fuel 8% Spoil 2% Steel 1% Spoil 0%

Summary Approximate Tonnes of Carbon Dioxide Embedded and Emmited:

Summary

Approximate Tonnes of Carbon Dioxide Embedded and Emmited:

Туре	Grout ¹ / Concrete ²	Steel ³	Spoil ⁴	Fuel ⁵	Mobilisation ⁶	Total
	te C0 ₂	te C0 ₂	te C0 ₂	te C0 ₂	te C0 ₂	te C0 ₂
Micropile	0.79	0.2	0.066	0.06	0.36	1.48
Bottom Driven	0.16	0.44	None	0.08	0.36	1.04
Auger Bored	1.94	0.04	0.066	0.4	0.72	3.17

1) Siesta uses a NIFES advised average of 777kg CO₂/te

- Siesta uses a calculated average of 328kg CO₂/m³
- 3) Siesta uses a NIFES advised average of 1,820kg CO₂/te
- 4) Transport only. Based on 50 mile trip, 50% urban and 50% rural
- 5) Based on DEFRA recommendation of 2.630kg CO₂/litre
- 6) Round trips are assumed by an articulated HGV with 40% urban, 40% rural and 20% motorway driving

Discussion – Bottom Driven

Bottom Driven produced least carbon emissions.

- Why?
- Although large amount of steel used there was not a great volume of concrete.

In this instance concrete was the lesser of two 'carbon evils'. Both the micropile and auger bored methods used a cement grout which produces three to four times as much carbon per tonne.

No spoil and therefore no carbon emissions.

Discussion – Micropile and Auger Bored

Micropile close second – Main factor was the use of cement

If a cement replacement was used e.g. PFA or a lower strength grout (0.4 w/c ratio was used) this would significantly reduce the amount of carbon emissions produced.

And lastly Auger Bored;

Worst Offender – Least design efficient i.e. longer pile length = greater materials.

Discussion – General

- Mobilisation ratios and fuel similar in comparison
- If steel is considered 'recycled' it has a dramatic effect
- Varying ratios in steel:grout/concrete for different methods
- F.O.S lower the more testing is undertaken = Lower CO_2
- Big potential for variation due to;
 - Reference data
 - Use of grout Vs. Concrete
 - Use of cement replacement (PFA) Vs. OPC
 - Use of recycled Steel Vs. General (Confidence in Source / Traceability)

High variability in published figures

More work is required to determine the accuracy of the figures

Therefore Siesta is primarily a tool for COMPARISON

As such Siesta does give clients choice.

•Lowest C0₂ is nearly always lowest cost.

•Therefore SUSTAINABLE = AFFORDABLE

•With the correct choice of materials;

'Micropiles are the <u>GREEN</u> choice'

Dziękują Dankeschön Grazie ¡Gracias! Merci Tak for lån Takk Thankyou

A Balfour Beatty Company