Treasure's report of 1st Lizzi Scholarship

IWM2006 in Schrobenhausen, Germany: May 5th, 2006

Shingo MORIMASA Graduate Student, GeoMechanics Group, Toyohashi University of Technology

Treasure's Report 1st Lizzi Scholarship (IWM2004)

Date	Type of Expense	Total		
2004/08/24	Rail fare from Toyohashi to Tokyo	8,190 yen		
	Rail fare from Shibuya to Kachidoki	600 yen		
2004/08/25	Rail fare from Kachidoki to Denen-chofu	410 yen		
	Rail fare from Denen-chofu to Kachidoki	410 yen		
2004/08/26	Rail fare from Kachidoki to Denen-chofu	360 yen		
	Rail fare from Negishi to Kachidoki	710 yen		
2004/08/27	Lodging charge for three nights	19,080 yen		
	Rail fare from Kachidoki to Denen-chofu	360 yen		
	Rail fare from Oyamadai to Oimachi	190 yen		
	Rail fare from Tokyo to Toyohashi	8,190 yen		
	TOTAL	38,500 YEN (\$351.41)		

Simulation of the Confining Effect on Bearing Capacity of Micropile Foundation; -- Field Loading Test and FEM Simulation --

IWM2006 in Schrobenhausen, Germany: May 5th, 2006

Shingo MORIMASA Graduate Student, GeoMechanics Group, Toyohashi University of Technology

Table of contents

- Purpose
- Field Loading Test
 - Prestressed micropile method
- FEM simulation
 - Confining effect
 - Effects of network and prestress
- Summary and future plan

The purpose of this study

Early studies (Otani, Tsukada, Miura et al)

- "Model Loading Tests on The Footing Reinforced with Prestressed Micropiles"
- "Large-Scaled Field Loading Test on The Footing Reinforced with Prestressed Micropiles"
- Analytic clarification of the mechanism of the mobilization of load bearing capacity of foundation reinforced with prestressed micropiles

Field loading test

The boring log and the SPT N-value of the upper 10 meters

•The subsoils are fill, loam, cemented clay, sandy clay, and fine sand, respectively.

 The fill, loam and clay are soft; the SPT N-values are less than 5.

Field loading test

Loading apparatus

Vertical Loading test

Horizontal Loading test

The results of vertical loading tests

Also in field loading test, network effect was mobilized. The settlement became half due to the effect of prestress.

The results of horizontal loading tests

Initial coefficient of subgrade reaction

- FT-MP(non-prestressed)
 1.01 ×10³kN/m³
- FT-PSMP(prestressed)
 - 17.1×10³kN/m³

The effect of prestress was significant in the horizontal movement control.

FEM simulation

Footing:

- rigid material
- Micropiles:
 - elastic bending material
 - second-order FEM elements
- Ground:
 - elasto-plastic model
 - Drucker-Prager Type
- Ground Micropiles:
 - bi-linear slider element

Analysis condition

Type of foundation

Footing, Micropile(MP), MP-footing, and prestressed MP-footing

Ground

- Dense sand and Loose sand
- Loading
 - Vertical and Horizontal Loading

Input parameters	Dilatancy angle $\psi > 0$:positive dilatancy $\psi < 0$:negative dilatancy

Mechanical properties

	φ (°)	<i>c</i> (N/m ²)	ψ(°)	ρ (kg/m ³)	<i>E</i> (N/m ²)	<i>G</i> (N/m ²)	ν
Dense sand	35	0	10	2.00×10 ³	1.04×10^{8}	1.20×10^{8}	0.3
Loose sand	30	0	-10	1.90×10 ³	0.35×10^{8}	0.40×10^{8}	0.3
Micropile				2.40×10 ³	70×10 ⁸	2.69×10 ⁹	0.3

Frinction angle between Ground and Micropiles

- Internal friction angle of ground tan
- Prestress
 - Approximately 30% of bearing capacity of micropiles

Vertical Loading Condition (Confining Effect)

Vertical Loading Condition (Effect of prestress)

Horizontal Loading Condition

(Effect of prestress)

Summary and future plan

- The confining effects on the ground by the micropiles were clearly observed both in the loading tests and FEM simulations
- The effect of the prestress which induced the confinement on the subsoil by the footing and the micropiles, was recognized not only in the loading tests but also in the FEM simulations.

The FEM simulation must be modified

- The yielding of micropiles under the horizontal loading on piles
- The increase in shear modulus of ground due to the confinement

3-D FEM simulation

- network of micropiles
- confining effect

Thank you for your attention !

End of the Presentation