Micropile Bearing Plates:

Are they Necessary?

Presented by: Nadir Ansari, P.Eng.

The Art Gallery of Ontario

Post-Transformation – Frank Gehry

Royal Ontario Museum

Post-Transformation - Daniel Libeskind

Outline

Reasons for Test
Test set up
Instrumentation
Our Findings

Reasons for Test and Analysis Program

- Cost
- Time/ Schedule impact
- Difficult to ensure plate to grout contact
- Plates impede concrete placement beneath
- Plates provide smooth interface where cracks may propagate
- Tests by the Ohio DOT in 1947, suggest large plates may weaken pile caps

Test Set Up

Test Set up

Test Set Up

Concrete Strain Gauge

Rebar with Strain Gauges

Compressible Material

Test Set Up

30 MPa Concrete

Peter Sheffield & Associates Ltd.

Cylinders

Cyclic Loading for One Micropile

-8050 kN ultimate load on cap
-50 mm movement
-136 MPa based on MP area
Peter Sheffield & Associates Ltd.

-2.33 Design Load

Results - Actual Cracking Pattern

Actual Cracking Pattern

Column Base Plate

Cracking Pattern in one quarter of the cap

Strut and Tie Model Used to Determine Required Reinforcement

Vertical Stress

Vertical Stress

Horizontal Stress in Reinforcement Plane

Results-Rebar Stress

Our Findings

-Bearing plates were not necessary

-Based on area the bearing strength was 4.5 times the concrete compressive strength much higher than allowed by codes

-Class A analysis predicted failure within 5%

-The concrete strut was parabolic, not linear

Findings Continued

-Longitudinal rebar was in Compression in the middle of the pile cap

-Rebar can be spaced evenly across pile cap

-Further research for other geometries is necessary

Ontario College of Art and Design

